Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (5)
- Doctoral Thesis (1)
Keywords
- central complex (2)
- learning and memory (2)
- magnetic compass (2)
- navigation (2)
- Cataglyphis (1)
- Cataglyphis-Wüstenameisen (1)
- Geomagnetic Field (1)
- Himmelskompass (1)
- Insektennavigation (1)
- Kompass (1)
At the beginning of their foraging careers, Cataglyphis desert ants calibrate their compass systems and learn the visual panorama surrounding the nest entrance. For that, they perform well-structured initial learning walks. During rotational body movements (pirouettes), naïve ants (novices) gaze back to the nest entrance to memorize their way back to the nest. To align their gaze directions, they rely on the geomagnetic field as a compass cue. In contrast, experienced ants (foragers) use celestial compass cues for path integration during food search. If the panorama at the nest entrance is changed, foragers perform re-learning walks prior to heading out on new foraging excursions. Here, we show that initial learning walks and re-learning walks are structurally different. During re-learning walks, foragers circle around the nest entrance before leaving the nest area to search for food. During pirouettes, they do not gaze back to the nest entrance. In addition, foragers do not use the magnetic field as a compass cue to align their gaze directions during re-learning walk pirouettes. Nevertheless, magnetic alterations during re-learning walks under manipulated panoramic conditions induce changes in nest-directed views indicating that foragers are still magnetosensitive in a cue conflict situation.
The Johnston's organ (JO) in the insect antenna is a multisensory organ involved in several navigational tasks including wind‐compass orientation, flight control, graviception, and, possibly, magnetoreception. Here we investigate the three dimensional anatomy of the JO and its neuronal projections into the brain of the desert ant Cataglyphis, a marvelous long‐distance navigator. The JO of C. nodus workers consists of 40 scolopidia comprising three sensory neurons each. The numbers of scolopidia slightly vary between different sexes (female/male) and castes (worker/queen). Individual scolopidia attach to the intersegmental membrane between pedicel and flagellum of the antenna and line up in a ring‐like organization. Three JO nerves project along the two antennal nerve branches into the brain. Anterograde double staining of the antennal afferents revealed that JO receptor neurons project to several distinct neuropils in the central brain. The T5 tract projects into the antennal mechanosensory and motor center (AMMC), while the T6 tract bypasses the AMMC via the saddle and forms collaterals terminating in the posterior slope (PS) (T6I), the ventral complex (T6II), and the ventrolateral protocerebrum (T6III). Double labeling of JO and ocellar afferents revealed that input from the JO and visual information from the ocelli converge in tight apposition in the PS. The general JO anatomy and its central projection patterns resemble situations in honeybees and Drosophila. The multisensory nature of the JO together with its projections to multisensory neuropils in the ant brain likely serves synchronization and calibration of different sensory modalities during the ontogeny of navigation in Cataglyphis.
Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants
(2021)
Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.
Erfolgreiche räumliche Orientierung ist für viele Tiere eine alltägliche Herausforderung. Cataglyphis‐Wüstenameisen sind bekannt für ihre Navigationsfähigkeiten, mit deren Hilfe sie nach langen Futtersuchläufen problemlos zum Nest zurückfinden. Wie aber nehmen naive Ameisen ihre Navigationssysteme in Betrieb? Nach mehrwöchigem Innendienst im dunklen Nest werden sie zu Sammlerinnen bei hellem Sonnenschein. Dieser Wechsel erfordert einen drastischen Wandel im Verhalten sowie neuronale Veränderungen im Gehirn. Erfahrene Ameisen orientieren sich vor allem visuell, sie nutzen einen Himmelskompass und Landmarkenpanoramen. Daher absolvieren naive Ameisen stereotype Lernläufe, um ihren Kompass zu kalibrieren und die Nestumgebung kennenzulernen. Während der Lernläufe blicken sie wiederholt zum Nesteingang zurück und prägen sich so ihren Heimweg ein. Zur Ausrichtung ihrer Blicke nutzen sie das Erdmagnetfeld als Kompassreferenz. Cataglyphis‐Ameisen besitzen hierfür einen Magnetkompass, der bislang unbekannt war.
Humans and animals alike use the sun, the moon, and the stars to guide their ways.
However, the position of celestial cues changes depending on daytime, season, and
place on earth. To use these celestial cues for reliable navigation, the rotation of the
sky has to be compensated. While humans invented complicated mechanisms like the
Antikythera mechanism to keep track of celestial movements, animals can only rely on
their brains. The desert ant Cataglyphis is a prime example of an animal using celestial
cues for navigation. Using the sun and the related skylight polarization pattern as a
compass, and a step integrator for distance measurements, it can determine a vector
always pointing homewards. This mechanism is called path integration. Since the sun’s
position and, therefore, also the polarization pattern changes throughout the day,
Cataglyphis have to correct this movement. If they did not compensate for time, the
ants’ compass would direct them in different directions in the morning and the evening.
Thus, the ants have to learn the solar ephemeris before their far-reaching foraging
trips.
To do so, Cataglyphis ants perform a well-structured learning-walk behavior during the
transition phase from indoor worker to outdoor forager. While walking in small loops
around the nest entrance, the ants repeatedly stop their forward movements to perform
turns. These can be small walked circles (voltes) or tight turns about the ants’ body
axes (pirouettes). During pirouettes, the ants gaze back to their nest entrance during
stopping phases. These look backs provide a behavioral read-out for the state of the
path integrator. The ants “tell” the observer where they think their nest is, by looking
back to it. Pirouettes are only performed by Cataglyphis ants inhabiting an environment
with a prominent visual panorama. This indicates, that pirouettes are performed to
learn the visual panorama. Voltes, on the other hand, might be used for calibrating the
celestial compass of the ants.
In my doctoral thesis, I employed a wide range of state-of-the-art techniques from
different disciplines in biology to gain a deeper understanding of how navigational
information is acquired, memorized, used, and calibrated during the transition phase
from interior worker to outdoor forager. I could show, that celestial orientation cues that
provide the main compass during foraging, do not guide the ants during the look-backbehavior
of initial learning walks. Instead Cataglyphis nodus relies on the earth’s
magnetic field as a compass during this early learning phase. While not guiding the
ants during their first walks outside of the nest, excluding the ants from perceiving the
natural polarization pattern of the skylight has significant consequences on learning-related
plasticity in the ants’ brain. Only if the ants are able to perform their learning-walk
behavior under a skylight polarization pattern that changes throughout the day,
plastic neuronal changes in high-order integration centers are induced. Especially the
mushroom bogy collar, a center for learning and memory, and the central complex, a
center for orientation and motor control, showed an increase in volume after learning
walks. This underlines the importance of learning walks for calibrating the celestial
compass. The magnetic compass might provide the necessary stable reference
system for the ants to calibrate their celestial compass and learn the position of
landmark information. In the ant brain, visual information from the polarization-sensitive
ocelli converge in tight apposition with neuronal afferents of the mechanosensitive
Johnston’s organ in the ant’s antennae. This makes the ants’ antennae an interesting
candidate for studying the sensory bases of compass calibration in Cataglyphis ants.
The brain of the desert navigators is well adapted to successfully accomplish their
navigational needs. Females (gynes and workers) have voluminous mushroom bodies,
and the synaptic complexity to store large amount of view-based navigational
information, which they acquire during initial learning walks. The male Cataglyphis
brain is better suited for innate behaviors that support finding a mate.
The results of my thesis show that the well adapted brain of C. nodus ants undergoes
massive structural changes during leaning walks, dependent on a changing celestial
polarization pattern. This underlies the essential role of learning walks in the calibration
of orientation systems in desert ants.