Refine
Has Fulltext
- yes (5)
Is part of the Bibliography
- yes (5)
Document Type
- Journal article (5)
Language
- English (5)
Keywords
- Neurobiologie (4)
- Autoradiography (1)
- Biowissenschaften (1)
- Hypothalamus (1)
- Microinjection (1)
- Neuropeptides (1)
- Neurophysiologie (1)
- TRH (1)
- [3H][3Me-His2]-TRH (1)
Institute
Thyrotropin-releasing hormonewas shown to exert potent ventilatory effects after centrat administration. These data, however, were derived from studies using anesthetized animal preparations. Since TRH elicits strong arousal reactions, the observed ventilatory effects of TRH under anesthesia may have been due to nonspecific reduction in the anesthetic state of the animals. In order to clarify the extent to which the reversal of anesthesia may change ventilatory parameters after TRH application, we investigated the effect of TRH on Ventilation rate, relative tidal volume, relative respiratory minute volume, CO\(_2\) production CO\(_2\) consumption, and locomotor activity in the conscious, unrestrained rat. Intracerebroventricular application of TRH induced a dose-dependent, sustained increase in ventilation rate, relative tidal volume, and relative respiratory minute volume of maximally 128%, 890%, and 235%, respectively. In addition, CO\(_2\) production and O\(_2\) consumption were elevated by 4.6 and 11.7 fold, whiJe no significant changes in locomotor activity were observed. The results suggest that TRH stimulates ventilation by a mechanism independent of its analeptic properties.
Tyr-o-Arg\(^2\)-Phe-sarcosine\(^4\) (TAPS), a mu-selective tetrapeptide analog of dermorphin, induced sustained antinociception and stimulated ventilatory minute volume (MV) at the doses of 3 to 100 pmol i.c.v. The doses of 30 and 100 pmol i.c.v. induced catalepsy. The effect of TAPS on MV was in negative correlation with the dose and the maximal response was achieved by the lowest (3 pmol) dose (+63 ± 23%, P < .05). Morphine, an agonist at both mu\(_1\) and mu\(_2\) sites, at a dose of 150 nmol i.c.v. (equianalgetic to 100 pmol of TAPS decreased the MV by 30%, due to a decrease in ventilatory tidal volume. The antinociceptive effect of TAPS was antagonized by naloxone and the mu, receptor antagonist, naloxonazine. Naloxonazine also attenuated the catalepsy produced by 1 00 pmol of TAPS i.c. v. and the respiratory Stimulation produced by 3 pmol of TAPS i.c.v. Pretreatment with 30 pmol of TAPS antagonized the respiratory depression induced by the mu opioid agonist dermorphin (changes in MV after dermorphin alone at 1 or 3 nmol were -22 ± 1 0% and -60 ± 9% and, after pretreatment with TAPS, +44 ± 11 % and -18 ± 5%, respectively). After combined pretreatment with naloxonazine and TAPS, 1 nmol of dermorphin had no significant effect on ventilation. In contrast, pretreatment with a low respiratory stimulant dose (10 pmol i.c.v.) of dermorphin did not modify the effect of 1 nmol of dermorphin. ln conclusion, the antinociceptive, cataleptic and respiratory stimulant effects of TAPS appear to be a related to its agonist action at the mu, opioid receptors. TAPS did not induce respiratory depression (a mu\(_2\) opioid effect) but antagonized the respiratory depressant effect of another mu agonist. Thus, in vivo TAPS appears to act as a mu\(_2\) receptor antagonist.
The present study was performed in order to evaluate the effects of the selective 02- adrenoceptor antagonist 6-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benzazepine (SK&F 86466) on dermorphin-induced analgesia, respiratory depression and inhibition of locomotor activity in the conscious rat. Intracerebroventricular (icv) administration of dermorphin (3 nmol/rat) decreased respiration rate and relative ventilatory minute volume maximally by 38 % and 50 % of baseline respectively. SK&F 86466 dose-dependently reversed the dermorphin-induced depression of ventilatory parameters, while SK&F 86466 exerted no effect on dermorphin-induced analgesia or depression of locomotor activity due to catalepsia. It appears, therefore, that a 2-adrenoceptors selectively interact with Jl2-opioid-receptor mediated effects, such as respiratory depression, but are not involved in the modulation of Jl,-opioid-related effects, such as supraspinal analgesia and depression of locomotor activity.
The present study was performed to qua ntify the distribution of a peptide neurotransmitter after microinjection into the medial preoptic area (POM), using a technique suitable for conscious animal preparations. The results indicate that only 50-ni volumes of injected tracer were sufficiently localized with 77 ± 9% recovery in the POM. Injections of higher volumes resulted in an increasing spread of tracer into distant anatomical regions and structures, including the needle tract and cerebral ventricles. The amount of tracer localized in the POM decreased to 38±4% (200 nl) (P < 0.05) and 41 ±8% (500 nl) (P <0.05), respectively. The data suggest that the volume of injection is critical for intraparenchymal injections into structures of a diameter of I mm or less, such as the POM and should not exceed 50 nl in conscious animal preparations.