Refine
Has Fulltext
- yes (23)
Is part of the Bibliography
- yes (23)
Year of publication
Document Type
- Journal article (22)
- Doctoral Thesis (1)
Language
- English (23)
Keywords
- adrenocortical carcinoma (4)
- biomarker (3)
- CYP2W1 (2)
- Cushing’s disease (2)
- SOAT1 (2)
- adenomas (2)
- carcinomas (2)
- hypercortisolism (2)
- immune response (2)
- miRNA (2)
Institute
- Medizinische Klinik und Poliklinik I (22)
- Pathologisches Institut (10)
- Comprehensive Cancer Center Mainfranken (3)
- Institut für Pharmakologie und Toxikologie (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Urologische Klinik und Poliklinik (2)
- Center for Computational and Theoretical Biology (1)
- Institut für Klinische Biochemie und Pathobiochemie (1)
- Institut für Rechtsmedizin (1)
- Institut für Virologie und Immunbiologie (1)
Background
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. Tumor-related glucocorticoid excess is present in similar to 60% of patients and associated with particularly poor prognosis. Results of first clinical trials using immune checkpoint inhibitors were heterogeneous. Here we characterize tumor-infiltrating T lymphocytes (TILs) in ACC in association with glucocorticoids as potential explanation for resistance to immunotherapy.
Methods
We performed immunofluorescence analysis to visualize tumor-infiltrating T cells (CD3\(^+\)), T helper cells (CD3\(^+\)CD4\(^+\)), cytotoxic T cells (CD3\(^+\)CD8\(^+\)) and regulatory T cells (Tregs; CD3\(^+\)CD4\(^+\)FoxP3\(^+\)) in 146 ACC tissue specimens (107 primary tumors, 16 local recurrences, 23 metastases). Quantitative data of immune cell infiltration were correlated with clinical data (including glucocorticoid excess).
Results
86.3% of ACC specimens showed tumor infiltrating T cells (7.7 cells/high power field (HPF)), including T helper (74.0%, 6.7 cells/HPF), cytotoxic T cells (84.3%, 5.7 cells/HPF) and Tregs (49.3%, 0.8 cells/HPF). The number of TILs was associated with better overall survival (HR for death: 0.47, 95% CI 0.25 to 0.87), which was true for CD4\(^+\)- and CD8\(^+\) subpopulations as well. In localized, non-metastatic ACC, the favorable impact of TILs on overall and recurrence-free survival was manifested even independently of ENSAT (European Network for the Study of Adrenal Tumors) stage, resection status and Ki67 index. T helper cells were negatively correlated with glucocorticoid excess (Phi=-0.290, p=0.009). Patients with glucocorticoid excess and low TILs had a particularly poor overall survival (27 vs. 121 months in patients with TILs without glucocorticoid excess).
Conclusion
Glucocorticoid excess is associated with T cell depletion and unfavorable prognosis. To reactivate the immune system in ACC by checkpoint inhibitors, an inhibition of adrenal steroidogenesis might be pivotal and should be tested in prospective studies.
The SF-1 transcription factor target gene FATE1 encodes a cancer-testis antigen that has an important role in regulating apoptosis and response to chemotherapy in adrenocortical carcinoma (ACC) cells. Autoantibodies directed against FATE1 were previously detected in patients with hepatocellular carcinoma. In this study, we investigated the prevalence of circulating anti-FATE1 antibodies in pediatric and adult patients with adrenocortical tumors using three different methods (immunofluorescence, ELISA and Western blot). Our results show that a pervasive anti-FATE1 immune response is present in those patients. Furthermore, FATE1 expression is a robust prognostic indicator in adult patients with ACC and is associated with increased steroidogenic and decreased immune response gene expression. These data can open perspectives for novel strategies in ACC immunotherapy.
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy and treatment of advanced disease is challenging. Clinical trials with multi-tyrosine kinase inhibitors in the past have yielded disappointing results. Here, we investigated fibroblast growth factor (FGF) receptors and their pathways in adrenocortical tumors as potential treatment targets. We performed real-time RT-PCR of 93 FGF pathway related genes in a cohort of 39 fresh frozen benign and malignant adrenocortical, 9 non-adrenal tissues and 4 cell lines. The expression of FGF receptors was validated in 166 formalin-fixed paraffin embedded (FFPE) tissues using RNA in situ hybridization (RNAscope) and correlated with clinical data. In malignant compared to benign adrenal tumors, we found significant differences in the expression of 16/94 FGF receptor pathway related genes. Genes involved in tissue differentiation and metastatic spread through epithelial to mesechymal transition were most strongly altered. The therapeutically targetable FGF receptors 1 and 4 were upregulated 4.6- and 6-fold, respectively, in malignant compared to benign adrenocortical tumors, which was confirmed by RNAscope in FFPE samples. High expression of FGFR1 and 4 was significantly associated with worse patient prognosis in univariate analysis. After multivariate adjustment for the known prognostic factors Ki-67 and ENSAT tumor stage, FGFR1 remained significantly associated with recurrence-free survival (HR=6.10, 95%CI: 1.78 – 20.86, p=0.004) and FGFR4 with overall survival (HR=3.23, 95%CI: 1.52 – 6.88, p=0.002). Collectively, our study supports a role of FGF pathways in malignant adrenocortical tumors. Quantification of FGF receptors may enable a stratification of ACC for the use of FGFR inhibitors in future clinical trials.
Background
Prostate cancer (PCa) is the most frequent cancer in men. The prognosis of PCa is heterogeneous with many clinically indolent tumors and rare highly aggressive cases. Reliable tissue markers of prognosis are lacking. Active cholesteryl ester synthesis has been associated with prostate cancer aggressiveness. Sterol-O-Acyl transferases (SOAT) 1 and 2 catalyze cholesterol esterification in humans.
Objective
To investigate the value of SOAT1 and SOAT2 tissue expression as prognostic markers in high risk PCa.
Patients and Methods
Formalin-fixed paraffin-embedded tissue samples from 305 high risk PCa cases treated with radical prostatectomy were analyzed for SOAT1 and SOAT2 protein expression by semi-quantitative immunohistochemistry. The Kaplan-Meier method and Cox proportional hazards modeling were used to compare outcome.
Main Outcome Measure
Biochemical recurrence (BCR) free survival.
Results
SOAT1 expression was high in 73 (25%) and low in 219 (75%; not evaluable: 13) tumors. SOAT2 was highly expressed in 40 (14%) and at low levels in 249 (86%) samples (not evaluable: 16). By Kaplan-Meier analysis, we found significantly shorter median BCR free survival of 93 months (95% confidence interval 23.6-123.1) in patients with high SOAT1 vs. 134 months (112.6-220.2, Log-rank p < 0.001) with low SOAT1. SOAT2 expression was not significantly associated with BCR. After adjustment for age, preoperative PSA, tumor stage, Gleason score, resection status, lymph node involvement and year of surgery, high SOAT1 but not SOAT2 expression was associated with shorter BCR free survival with a hazard ratio of 2.40 (95% CI 1.57-3.68, p < 0.001). Time to clinical recurrence and overall survival were not significantly associated with SOAT1 and SOAT2 expression CONCLUSIONS: SOAT1 expression is strongly associated with BCR free survival alone and after multivariable adjustment in high risk PCa. SOAT1 may serve as a histologic marker of prognosis and holds promise as a future treatment target.
A clinically relevant proportion of adrenocortical carcinoma (ACC) cases shows a tendency to metastatic spread. The objective was to determine whether the epithelial to mesenchymal transition (EMT), a mechanism associated with metastasizing in several epithelial cancers, might play a crucial role in ACC. 138 ACC, 29 adrenocortical adenomas (ACA), three normal adrenal glands (NAG), and control tissue samples were assessed for the expression of epithelial (E-cadherin and EpCAM) and mesenchymal (N-cadherin, SLUG and SNAIL) markers by immunohistochemistry. Using real-time RT-PCR we quantified the alternative isoform splicing of FGFR 2 and 3, another known indicator of EMT. We also assessed the impact of these markers on clinical outcome. Results show that both normal and neoplastic adrenocortical tissues lacked expression of epithelial markers but strongly expressed mesenchymal markers N-cadherin and SLUG. FGFR isoform splicing confirmed higher similarity of adrenocortical tissues to mesenchymal compared to epithelial tissues. In ACC, higher SLUG expression was associated with clinical markers indicating aggressiveness, while N-cadherin expression inversely associated with these markers. In conclusion, we could not find any indication of EMT as all adrenocortical tissues lacked expression of epithelial markers and exhibited closer similarity to mesenchymal tissues. However, while N-cadherin might play a positive role in tissue structure upkeep, SLUG seems to be associated with a more aggressive phenotype.
Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing’s syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing’s syndrome.
Context
Cushing’s syndrome (CS) is a rare disease of endogenous hypercortisolism associated with high morbidity and mortality. Diagnosis and classification of CS is still challenging.
Objective
Circulating microRNAs (miRNAs) are minimally invasive diagnostic markers. Our aim was to characterize the circulating miRNA profiles of CS patients and to identify distinct profiles between the two major CS subtypes.
Methods
We included three groups of patients from the German Cushing’s registry: ACTH-independent CS (Cortisol-Producing-Adenoma; CPA), ACTH-dependent pituitary CS (Cushing’s Disease; CD), and patients in whom CS had been ruled out (controls). Profiling of miRNAs was performed by next-generation-sequencing (NGS) in serum samples of 15 CS patients (each before and after curative surgery) and 10 controls. Significant miRNAs were first validated by qPCR in the discovery cohort and then in an independent validation cohort of 20 CS patients and 11 controls.
Results
NGS identified 411 circulating miRNAs. Differential expression of 14 miRNAs were found in the pre- and postoperative groups. qPCR in the discovery cohort validated 5 of the significant miRNAs from the preoperative group analyses. Only, miR-182-5p was found to be significantly upregulated in the CD group of the validation cohort. Comparing all CS samples as a group with the controls did not reveal any significant differences in expression.
Outcome
In conclusion, our study identified miR-182-5p as a possible biomarker for CD, which has to be validated in a prospective cohort. Furthermore, our results suggest that presence or absence of ACTH might be at least as relevant for miRNA expression as hypercortisolism itself.
We have previously identified serum miR-483-5p as a preoperative diagnosis and prognosis biomarker for adrenocortical cancer (ACC). Here, we aimed to determine whether circulating miR-483-5p levels measured 3 months post-operatively distinguished patients with good prognosis (no recurrence for at least 3 years; NR3yrs) from patients with poor prognosis (recurrence or death within 3 years after surgery; R < 3yrs). We conducted a single-center retrospective analysis using sera from 48 patients with ACC that were initially non-metastatic and treated by surgery. Sera sampled within 3 months after surgery were available in 26 patients. MiR-483-5p absolute circulating levels were measured using quantitative PCR. Thirteen patients showed a recurrence before 3 years (=R < 3yrs). Thirteen patients showed no recurrence within 3 years, including 11 patients with a follow-up longer than 3 years (=NR3yrs). Serum miR-483-5p levels were higher in R < 3yrs than in NR3yrs: 1,541,990 ± 428,377 copies/mL vs. 388,457 ± 62,169 copies/mL (p = 0.002). Receiver operating characteristic analysis showed that a value of 752,898 copies/mL distinguished R < 3yrs from NR3yrs with 61.5% sensitivity (CI 31.6–86.1) and 100% specificity (CI 71.5–100) with an area under the curve of 0.853. Patients with a value below this threshold had a significantly longer recurrence-free and overall survival. In multivariate analysis, miR-483-5p provided the single best prognostic value for recurrence-free survival (RFS) (hazard ratio (HR) for recurrence 5.98, p < 0.011) but not for overall survival. Our study suggests that serum miR-483-5p is a potent early post-operative biomarker for ACC prognosis that might be a better predictor of RFS than currently used markers.
Cushing’s disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD’s genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5%) and USP48 (13.3%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5% and 7%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways.
Mitotane is the only approved drug for advanced adrenocortical carcinoma (ACC) and no biomarkers are available to predict attainment of therapeutic plasma concentrations and clinical response. Aim of the study was to evaluate the suitability of cytochrome P450(CYP)2W1 and CYP2B6 single nucleotide polymorphisms (SNPs) as biomarkers. A multicenter cohort study including 182 ACC patients (F/M = 121/61) treated with mitotane monotherapy after radical resection (group A, n = 103) or in not completely resectable, recurrent or advanced disease (group B, n = 79) was performed. CYP2W1*2, CYP2W1*6, CYP2B6*6 and CYP2B6 rs4803419 were genotyped in germline DNA. Mitotane blood levels were measured regularly. Response to therapy was evaluated as time to progression (TTP) and disease control rate (DCR). Among investigated SNPs, CYP2W1*6 and CYP2B6*6 correlated with mitotane treatment only in group B. Patients with CYP2W1*6 (n = 21) achieved less frequently therapeutic mitotane levels (>14 mg/L) than those with wild type (WT) allele (76.2% vs 51.7%, p = 0.051) and experienced shorter TTP (HR = 2.10, p = 0.019) and lower DCR (chi-square = 6.948, p = 0.008). By contrast, 55% of patients with CYP2B6*6 vs. 28.2% WT (p = 0.016) achieved therapeutic range. Combined, a higher rate of patients with CYP2W1*6WT+CYP2B6*6 (60.6%) achieved mitotane therapeutic range (p = 0.034). In not completely resectable, recurrent or advanced ACC, CYP2W1*6 SNP was associated with a reduced probability to reach mitotane therapeutic range and lower response rates, whereas CYP2B6*6 correlated with higher mitotane levels. The association of these SNPs may predict individual response to mitotane.