Refine
Has Fulltext
- yes (10)
Is part of the Bibliography
- yes (10)
Document Type
- Journal article (10)
Keywords
- cerebrospinal fluid (5)
- forensic neuropathology (5)
- biomarker (4)
- forensic neurotraumatology (4)
- immunohistochemistry (3)
- CSF (2)
- Akute Ösophagusnekrose (1)
- Appendizitis (1)
- Blinddarmentzündung (1)
- Candida (1)
„Black esophagus“ oder „akute Ösophagusnekrose“ (AÖN) ist eine seltene Erkrankung, die sich makroskopisch durch eine zirkumferente Schwarzverfärbung der Ösophagusmukosa mit abruptem Ende am gastroösophagealen Übergang auszeichnet. Die genaue Pathogenese ist unbekannt; es werden multifaktorielle Einflüsse wie z. B. Säurereflux, Ischämie und verringerte Schutzmechanismen der Mukosa als mögliche Ursachen diskutiert.
Vorgestellt werden 2 Obduktionsfälle, die typische Befunde einer AÖN aufwiesen. Zusätzlich hatten Fall 1 eine Candida-Infektion und Fall 2 eine Appendizitis, sodass eine infektiöse Genese in beiden Fällen eine Rolle gespielt haben könnte.
Routine coronal paraffin-sections through the dorsal frontal and parieto-occipital cortex of a total of sixty cases with divergent causes of death were immunohistochemically (IHC) stained with an antibody against TMEM119. Samples of cerebrospinal fluid (CSF) of the same cases were collected by suboccipital needle-puncture, subjected to centrifugation and processed as cytospin preparations stained with TMEM119. Both, cytospin preparations and sections were subjected to computer-assisted density measurements. The density of microglial TMEM119-positive cortical profiles correlated with that of cytospin results and with the density of TMEM119-positive microglial profiles in the medullary layer. There was no statistically significant correlation between the density of medullary TMEM119-positive profiles and the cytospin data. Cortical microglial cells were primarily encountered in supragranular layers I, II, and IIIa and in infragranular layers V and VI, the region of U-fibers and in circumscribed foci or spread in a diffuse manner and high density over the white matter. We have evidence that cortical microglia directly migrate into CSF without using the glympathic pathway. Microglia in the medullary layer shows a strong affinity to the adventitia of deep vessels in the myelin layer. Selected rapidly fatal cases including myocardial infarcts and drowning let us conclude that microglia in cortex and myelin layer can react rapidly and its reaction and migration is subject to pre-existing external and internal factors. Cytospin preparations proved to be a simple tool to analyze and assess complex changes in the CNS after rapid fatal damage. There is no statistically significant correlation between cytospin and postmortem interval. Therefore, the quantitative analyses of postmortem cytospins obviously reflect the neuropathology of the complete central nervous system. Cytospins provide forensic pathologists a rather simple and easy to perform method for the global assessment of CNS affliction.
The aim of this study was to investigate if the biomarkers myelin basic protein (MBP) and neurofilament-H (NF-H) yielded informative value in forensic diagnostics when examining cadaveric cerebrospinal fluid (CSF) biochemically via an enzyme-linked immunosorbent assay (ELISA) and comparing the corresponding brain tissue in fatal traumatic brain injury (TBI) autopsy cases by immunocytochemistry versus immunohistochemistry. In 21 trauma and 19 control cases, CSF was collected semi-sterile after suboccipital puncture and brain specimens after preparation. The CSF MBP (p = 0.006) and NF-H (p = 0.0002) levels after TBI were significantly higher than those in cardiovascular controls. Immunohistochemical staining against MBP and against NF-H was performed on cortical and subcortical samples from also biochemically investigated cases (5 TBI cases/5 controls). Compared to the controls, the TBI cases showed a visually reduced staining reaction against MBP or repeatedly ruptured neurofilaments against NF-H. Immunocytochemical tests showed MBP-positive phagocytizing macrophages in CSF with a survival time of > 24 h. In addition, numerous TMEM119-positive microglia could be detected with different degrees of staining intensity in the CSF of trauma cases. As a result, we were able to document that elevated levels of MBP and NF-H in the CSF should be considered as useful neuroinjury biomarkers of traumatic brain injury.
The aim of this pilot study was to investigate the diagnostic potential of TMEM119 as a useful microglia-specific marker in combination with immunostainings for phagocytic function and infiltrating capacity of monocytes in cases of lethal monosubstance intoxications by morphine (MOR), methamphetamine (METH), and of ethanol-associated death (ETH) respectively. Human brain tissue samples were obtained from forensic autopsies of cases with single substance abuse (MOR, n = 8; ETH, n = 10; METH, n = 9) and then compared to a cohort of cardiovascular fatalities as controls (n = 9). Brain tissue samples of cortex, white matter, and hippocampus were collected and stained immunohistochemically with antibodies against TMEM119, CD68KiM1P, and CCR2. We could document the lowest density of TMEM119-positive cells in MOR deaths with highly significant differences to the control densities in all three regions investigated. In ETH and METH deaths, the expression of TMEM119 was comparable to cell densities in controls. The results indicate that the immunoreaction in brain tissue is different in these groups depending on the drug type used for abuse.
The aim of the present study was a refined analysis of neuroinflammation including TMEM119 as a useful microglia-specific marker in forensic assessments of traumatic causes of death, e.g., traumatic brain injury (TBI). Human brain tissue samples were obtained from autopsies and divided into cases with lethal TBI (n = 25) and subdivided into three groups according to their trauma survival time and compared with an age-, gender-, and postmortem interval-matched cohort of sudden cardiovascular fatalities as controls (n = 23). Brain tissue samples next to cortex contusions and surrounding white matter as well as samples of the ipsilateral uninjured brain stem and cerebellum were collected and stained immunohistochemically with antibodies against TMEM119, CD206, and CCR2. We could document the highest number of TMEM119-positive cells in acute TBI death with highly significant differences to the control numbers. CCR2-positive monocytes showed a significantly higher cell count in the cortex samples of TBI cases than in the controls with an increasing number of immunopositive cells over time. The number of CD206-positive M2 microglial cells increased survival time-dependent. After 3 days of survival, the cell number increased significantly in all four regions investigated compared with controls. In sum, we validate a specific and robustly expressed as well as fast reacting microglia marker, TMEM119, which distinguishes microglia from resident and infiltrating macrophages and thus offers a great potential for the estimation of the minimum survival time after TBI.
In the last few years, quantitative analysis of metabolites in body fluids using LC/MS has become an established method in laboratory medicine and toxicology. By preparing metabolite profiles in biological specimens, we are able to understand pathophysiological mechanisms at the biochemical and thus the functional level. An innovative investigative method, which has not yet been used widely in the forensic context, is to use the clinical application of metabolomics. In a metabolomic analysis of 41 samples of postmortem cerebrospinal fluid (CSF) samples divided into cohorts of four different causes of death, namely, cardiovascular fatalities, isoIated torso trauma, traumatic brain injury, and multi-organ failure, we were able to identify relevant differences in the metabolite profile between these individual groups. According to this preliminary assessment, we assume that information on biochemical processes is not gained by differences in the concentration of individual metabolites in CSF, but by a combination of differently distributed metabolites forming the perspective of a new generation of biomarkers for diagnosing (fatal) TBI and associated neuropathological changes in the CNS using CSF samples.
A single, specific, sensitive biochemical biomarker that can reliably diagnose a traumatic brain injury (TBI) has not yet been found, but combining different biomarkers would be the most promising approach in clinical and postmortem settings. In addition, identifying new biomarkers and developing laboratory tests can be time-consuming and economically challenging. As such, it would be efficient to use established clinical diagnostic assays for postmortem biochemistry. In this study, postmortem cerebrospinal fluid samples from 45 lethal TBI cases and 47 controls were analyzed using commercially available blood-validated assays for creatine kinase (CK) activity and its heart-type isoenzyme (CK–MB). TBI cases with a survival time of up to two hours showed an increase in both CK and CK–MB with moderate (CK–MB: AUC = 0.788, p < 0.001) to high (CK: AUC = 0.811, p < 0.001) diagnostic accuracy. This reflected the excessive increase of the brain-type CK isoenzyme (CK–BB) following a TBI. The results provide evidence that CK immunoassays can be used as an adjunct quantitative test aid in diagnosing acute TBI-related fatalities.
Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages.
Assessing protein biomarkers to detect lethal acute traumatic brain injuries in cerebrospinal fluid
(2021)
Diagnosing traumatic brain injury (TBI) from body fluids in cases where there are no obvious external signs of impact would be useful for emergency physicians and forensic pathologists alike. None of the previous attempts has so far succeeded in establishing a single biomarker to reliably detect TBI with regards to the sensitivity: specificity ratio in a post mortem setting. This study investigated a combination of body fluid biomarkers (obtained post mortem), which may be a step towards increasing the accuracy of biochemical TBI detection. In this study, serum and cerebrospinal fluid (CSF) samples from 30 acute lethal TBI cases and 70 controls without a TBI-related cause of death were evaluated for the following eight TBI-related biomarkers: brain-derived neurotrophic factor (BDNF), ferritin, glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6), lactate dehydrogenase, neutrophil gelatinase-associated lipocalin (NGAL), neuron-specific enolase and S100 calcium-binding protein B. Correlations among the individual TBI biomarkers were assessed, and a specificity-accentuated threshold value analysis was conducted for all biomarkers. Based on these values, a decision tree modelling approach was performed to assess the most accurate biomarker combination to detect acute lethal TBIs. The results showed that 92.45% of acute lethal TBIs were able to be diagnosed using a combination of IL-6 and GFAP in CSF. The probability of detecting an acute lethal TBI was moderately increased by GFAP alone and considerably increased by the remaining biomarkers. BDNF and NGAL were almost perfectly correlated (p = 0.002; R\(^2\) = 0.944). This study provides evidence that acute lethal TBIs can be detected to a high degree of statistical accuracy using forensic biochemistry. The high inter-individual correlations of biomarkers may help to estimate the CSF concentration of an unknown biomarker, using extrapolation techniques.
Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.