Refine
Has Fulltext
- yes (8)
Is part of the Bibliography
- yes (8)
Document Type
- Journal article (7)
- Doctoral Thesis (1)
Keywords
- artificial intelligence (2)
- cytokines (2)
- machine learning (2)
- prediction (2)
- Bioluminescence (1)
- COPD (1)
- CXCR4 (1)
- CXCR7 (1)
- Chemie (1)
- Crystal Structure (1)
Institute
- Medizinische Klinik und Poliklinik I (3)
- Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie (2)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (1)
- Augenklinik und Poliklinik (1)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Institut für Anorganische Chemie (1)
- Klinik und Poliklinik für Nuklearmedizin (1)
- Medizinische Klinik und Poliklinik II (1)
- Pathologisches Institut (1)
- Physikalisches Institut (1)
Sonstige beteiligte Institutionen
No abstract available
Transportuntersuchungen an vertikal- und lateral-gekoppelten niederdimensionalen Elektronensystemen
(2009)
An Y-Schaltern konnte eine nichtlineare Verschiebung der Schwellspannung beobachtet werden. In einem Y-Schalter spaltet sich ein Stammwellenleiter über einen Verzweigungspunkt Y-förmig in zwei Astwellenleiter auf, so dass prinzipiell mehrere Maxima im Leitungsband existieren. Daher wurde ein Modell entwickelt, das die Dynamik der Leitungsbandmaxima im elektrischen Feld beschreibt. Dieses beinhaltet sowohl die geometrischen Kapazitäten als auch die Quantenkapazitäten des Y-Schalters. Zudem konnte gezeigt werden, dass lokalisierte Ladungen zur Beschreibung des Schaltens notwendig sind. Die Verschiebung der Schwellspannungen kann hierbei sehr gut durch das Zusammenspiel der klassischen und der Quantenkapazitäten beschrieben werden, wobei sich herausstellt, dass die Quantenkapazitäten des Systems einen dominierenden Einfluss auf das Schaltverhalten nehmen. Für X-förmige Verzweigungen wird gezeigt, dass für ausgewählte Spannungsbereiche an den vier lateralen Kontrollgates der Transport durch den X-Schalter entweder geblockt oder erlaubt ist. Dies wurde auf die Ausbildung eines Quantenpunkts im Zentrum des X-Schalters zurückgeführt. Es liegt also Coulomb-Blockade vor und der Elektronentransport durch die Struktur kann mittels eines Stabilitätsdiagramms analysiert werden. Es zeigt sich, dass die zentrale Elektroneninsel einen Durchmesser von etwa 20nm hat und eine Ladeenergie von E_C=15meV besitzt. Weiterhin konnten Transportbereiche aufgezeigt werden, welche einen negativen differentiellen Leitwert basierend auf einer dynamischen Kapazität aufweisen. Außerdem konnte in größeren Verzweigungen bistabiles Schalten aufgrund von Selbstschalten nachgewiesen werden. Es ist hierbei sowohl invertierendes als auch nicht-invertierendes Schalten zu beobachten. Es wurden Quantendrahttransistoren auf der Basis von wenigen Nanometer übereinander liegenden, vertikal gekoppelten Elektronengasen realisiert. Die Herstellung der Strukturen stellt hierbei besondere Herausforderungen an die Prozessierungstechniken. So mussten Barrieren unterschiedlicher Al-Konzentrationen während des Wachstums mittels Molekularstrahlepitaxie eingebracht werden, um einen Al-selektiven Ätzprozess anwenden zu können. Die beiden Elektronengase sind nach dem Wachstum lediglich durch eine 7nm dicke AlGaAs-Barriere voneinander getrennt. Um die beiden Elektronengase getrennt voneinander zu kontaktieren war es anschließend notwendig, ein spezielles Ätzverfahren anzuwenden. Es zeigte sich, dass eines der 2DEGs aufgrund des extrem geringen Abstands als hocheffektives Gate für das andere 2DEG dienen kann, wobei für die untersuchten Strukturen eine Gateeffektivität nahe eins, das heißt ein ideales Schalten, beschrieben wird. In Strukturen geringerer Dotierkonzentration wird anschließend hocheffektives Schalten bis zu einer Temperatur von 250K demonstriert. Basierend auf derartigen vertikal gekoppelten Elektronengasen wurden außerdem trocken geätzte Y-Transistoren hergestellt. Es kann bistabiles Schalten nachgewiesen werden, wobei analog zu den X-Strukturen ein Ast als Gate dient. Die Hysterese des bistabilen Schaltens kann dabei so klein eingestellt werden, dass rauschaktiviertes Schalten zwischen den beiden Ausgangszuständen des Systems zu beobachten ist. Es zeigt sich, dass das Schalten in solchen Strukturen mit einer Aktivierungsenergie von lediglich 0.4 kT erfolgt. Somit ist dieser Wert kleiner als das thermische Limit für stabiles Schalten in klassischen Bauelementen. Der 2-Terminal-Leitwert eines Quantendrahts bei Magnetfeldumkehr zeigt Asymmetrien, welche stark sowohl von den Spannungen an den Gates abhängen. Der Strom durch den Quantendraht kann einerseits mittels eines lateralen Gates und außerdem durch ein auf der Oberfläche liegendes vertikales Metallgate gesteuert werden. Hierbei wurde der Kanal einerseits durch Verarmung des 2DEGs über ein Metallgate definiert. Andererseits wurde auf der gegenüberliegenden Seite eine Potentialbarriere durch den Ätzgraben aufgebaut. Es stellte sich heraus, dass die gemessenen Asymmetrien auf den Wechsel zwischen elastischer Streuung der Kanalelektronen an der elektrostatischen Begrenzung und inelastischer Streuung an der geätzten Grenzfläche zurückzuführen sind. Für hohe Vorwärtsspannungen zeigt sich, dass der asymmetrische Anteil der dominierende Term im Leitwert ist. Dies erlaubt es, die vorliegende Struktur als Magnetfeldsensor, mit einer Sensitivität von 3.4mVT zu verwenden. Als Ausblick für die Zukunft kann festgestellt werden, dass komplex geformte Leiterbahnen durch die Ausnutzung von Effekten wie Coulomb-Blockade und Selbstschalten ein großes Potential für zukünftige Schaltkreise besitzen. Da Schaltenergien durch das Ausnutzen von Systemrauschen kleiner als das thermische Limit auftreten soll es ein Ziel für die Zukunft sein, Neuron ähnliche Schaltkreise auf der Basis von verzweigten Schaltern zu realisieren.
Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.
Background:
Corneal cross-linking is widely used to treat keratoconus. However, to date, only limited data from randomized trials support its efficacy.
Methods:
The efficacy and safety of corneal cross-linking for halting progression of keratoconus were investigated in a prospective, randomized, blinded, placebo controlled, multicentre trial. Twenty-nine keratoconus patients were randomized in three trial centres. The mean age at inclusion was 28 years. Longitudinal changes in corneal refraction were assessed by linear regression. The best corrected visual acuity, surface defects and corneal inflammation were also assessed. These data were analysed with a multifactorial linear regression model.
Results:
A total of 15 eyes were randomized to the treatment and 14 to the control group. Follow-up averaged 1098 days. Corneal refractive power decreased on average (+/-standard deviation) by 0.35 +/- 0.58 dioptres/year in the treatment group. The controls showed an increase of 0.11 +/- 0.61 dioptres/year. This difference was statistically significant (p = 0.02).
Conclusions:
Our data suggest that corneal cross-linking is an effective treatment for some patients to halt the progression of keratoconus. However, some of the treated patients still progressed, whereas some untreated controls improved. Therefore, further investigations are necessary to decide which patients require treatment and which do not.
Background: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factorinducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined.
Methods and results: Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality.
Conclusion: Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium.
Impact of the Chemokine Receptors CXCR4 and CXCR7 on Clinical Outcome in Adrenocortical Carcinoma
(2020)
Chemokine receptors have a negative impact on tumor progression in several human cancers and have therefore been of interest for molecular imaging and targeted therapy. However, their clinical and prognostic significance in adrenocortical carcinoma (ACC) is unknown. The aim of this study was to evaluate the chemokine receptor profile in ACC and to analyse its association with clinicopathological characteristics and clinical outcome. A chemokine receptor profile was initially evaluated by quantitative PCR in 4 normal adrenals, 18 ACC samples and human ACC cell line NCI-H295. High expression of CXCR4 and CXCR7 in both healthy and malignant adrenal tissue and ACC cells was confirmed. In the next step, we analyzed the expression and cellular localization of CXCR4 and CXCR7 in ACC by immunohistochemistry in 187 and 84 samples, respectively. These results were correlated with clinicopathological parameters and survival outcome. We detected strong membrane expression of CXCR4 and CXCR7 in 50% of ACC samples. Strong cytoplasmic CXCR4 staining was more frequent among samples derived from metastases compared to primaries (p=0.01) and local recurrences (p=0.04). CXCR4 membrane staining positively correlated with proliferation index Ki67 (r=0.17, p=0.028). CXCR7 membrane staining negatively correlated with Ki67 (r=−0.254, p=0.03) but positively with tumor size (r=0.3, p=0.02). No differences in progression-free or overall survival were observed between patients with strong and weak staining intensities for CXCR4 or CXCR7. Taken together, high expression of CXCR4 and CXCR7 in both local tumors and metastases suggests that some ACC patients might benefit from CXCR4/CXCR7-targeted therapy.
Background: Oro-antral communication (OAC) is a common complication following the extraction of upper molar teeth. The Archer and the Root Sinus (RS) systems can be used to classify impacted teeth in panoramic radiographs. The Archer classes B-D and the Root Sinus classes III, IV have been associated with an increased risk of OAC following tooth extraction in the upper molar region. In our previous study, we found that panoramic radiographs are not reliable for predicting OAC. This study aimed to (1) determine the feasibility of automating the classification (Archer/RS classes) of impacted teeth from panoramic radiographs, (2) determine the distribution of OAC stratified by classification system classes for the purposes of decision tree construction, and (3) determine the feasibility of automating the prediction of OAC utilizing the mentioned classification systems. Methods: We utilized multiple supervised pre-trained machine learning models (VGG16, ResNet50, Inceptionv3, EfficientNet, MobileNetV2), one custom-made convolutional neural network (CNN) model, and a Bag of Visual Words (BoVW) technique to evaluate the performance to predict the clinical classification systems RS and Archer from panoramic radiographs (Aim 1). We then used Chi-square Automatic Interaction Detectors (CHAID) to determine the distribution of OAC stratified by the Archer/RS classes to introduce a decision tree for simple use in clinics (Aim 2). Lastly, we tested the ability of a multilayer perceptron artificial neural network (MLP) and a radial basis function neural network (RBNN) to predict OAC based on the high-risk classes RS III, IV, and Archer B-D (Aim 3). Results: We achieved accuracies of up to 0.771 for EfficientNet and MobileNetV2 when examining the Archer classification. For the AUC, we obtained values of up to 0.902 for our custom-made CNN. In comparison, the detection of the RS classification achieved accuracies of up to 0.792 for the BoVW and an AUC of up to 0.716 for our custom-made CNN. Overall, the Archer classification was detected more reliably than the RS classification when considering all algorithms. CHAID predicted 77.4% correctness for the Archer classification and 81.4% for the RS classification. MLP (AUC: 0.590) and RBNN (AUC: 0.590) for the Archer classification as well as MLP 0.638) and RBNN (0.630) for the RS classification did not show sufficient predictive capability for OAC. Conclusions: The results reveal that impacted teeth can be classified using panoramic radiographs (best AUC: 0.902), and the classification systems can be stratified according to their relationship to OAC (81.4% correct for RS classification). However, the Archer and RS classes did not achieve satisfactory AUCs for predicting OAC (best AUC: 0.638). Additional research is needed to validate the results externally and to develop a reliable risk stratification tool based on the present findings.
Associations between periodontitis and COPD: An artificial intelligence-based analysis of NHANES III
(2022)
A number of cross-sectional epidemiological studies suggest that poor oral health is associated with respiratory diseases. However, the number of cases within the studies was limited, and the studies had different measurement conditions. By analyzing data from the National Health and Nutrition Examination Survey III (NHANES III), this study aimed to investigate possible associations between chronic obstructive pulmonary disease (COPD) and periodontitis in the general population. COPD was diagnosed in cases where FEV (1)/FVC ratio was below 70% (non-COPD versus COPD; binary classification task). We used unsupervised learning utilizing k-means clustering to identify clusters in the data. COPD classes were predicted with logistic regression, a random forest classifier, a stochastic gradient descent (SGD) classifier, k-nearest neighbors, a decision tree classifier, Gaussian naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural network (CNN), a multilayer perceptron artificial neural network (MLP), and a radial basis function neural network (RBNN) in Python. We calculated the accuracy of the prediction and the area under the curve (AUC). The most important predictors were determined using feature importance analysis. Results: Overall, 15,868 participants and 19 feature variables were included. Based on k-means clustering, the data were separated into two clusters that identified two risk characteristic groups of patients. The algorithms reached AUCs between 0.608 (DTC) and 0.953% (CNN) for the classification of COPD classes. Feature importance analysis of deep learning algorithms indicated that age and mean attachment loss were the most important features in predicting COPD. Conclusions: Data analysis of a large population showed that machine learning and deep learning algorithms could predict COPD cases based on demographics and oral health feature variables. This study indicates that periodontitis might be an important predictor of COPD. Further prospective studies examining the association between periodontitis and COPD are warranted to validate the present results.