Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (4)
Language
- English (4)
Keywords
- BRAF (1)
- advanced cutaneous squamous cell carcinoma (1)
- biodegradable (1)
- cemiplimab (1)
- checkpoint inhibitor therapy (1)
- dabrafenib (1)
- imiquimod (1)
- immunodrug delivery (1)
- immunosuppression (1)
- lymph nodes (1)
Cutaneous squamous cell carcinoma (cSCC) is a common malignancy of the skin and has an overall favorable outcome, except for patients with an advanced stage of the disease. The efficacy of checkpoint inhibitors (CPI) for advanced cSCC has been demonstrated in recent clinical studies, but data from real-world cohorts and trial-ineligible cSCC patients are limited. We retrospectively investigated patients with advanced cSCC who have been treated with CPI in a first-line setting at eight German skin cancer centers registered within the multicenter registry ADOReg. Clinical outcome parameters including response, progression-free (PFS) and overall survival (OS), time-to-next-treatment (TTNT), and toxicity were analyzed and have been stratified by the individual immune status. Among 39 evaluable patients, the tumor response rate (rwTRR) was 48.6%, the median PFS was 29.0 months, and the median OS was not reached. In addition, 9 patients showed an impaired immune status due to immunosuppressive medication or hematological diseases. Our data demonstrated that CPI also evoked tumor responses among immunocompromised patients (rwTRR: 48.1 vs. 50.0%), although these responses less often resulted in durable remissions. In line with this, the median PFS (11 vs. 40 months, p = 0.059), TTNT (12 months vs. NR, p = 0.016), and OS (29 months vs. NR, p < 0.001) were significantly shorter for this patient cohort. CPI therapy was well tolerated in both subcohorts with 15% discontinuing therapy due to toxicity. Our real-world data show that first-line CPI therapy produced strong and durable responses among patients with advanced cSCC. Immunocompromised patients were less likely to achieve long-term benefit from anti-PD1 treatment, despite similar tumor response rates.
The development of controlled biodegradable materials is of fundamental importance in immunodrug delivery to spatiotemporally controlled immune stimulation but avoid systemic inflammatory side effects. Based on this, polycarbonate nanogels are developed as degradable micellar carriers for transient immunoactivation of lymph nodes. An imidazoquinoline‐type TLR7/8 agonist is covalently conjugated via reactive ester chemistry to these nanocarriers. The nanogels not only provide access to complete disintegration by the hydrolysable polymer backbone, but also demonstrate a gradual disintegration within several days at physiological conditions (PBS, pH 6.4–7.4, 37 °C). These intrinsic properties limit the lifetime of the carriers but their payload can still be successfully leveraged for immunological studies in vitro on primary immune cells as well as in vivo. For the latter, a spatiotemporal control of immune cell activation in the draining lymph node is found after subcutaneous injection. Overall, these features render polycarbonate nanogels a promising delivery system for transient activation of the immune system in lymph nodes and may consequently become very attractive for further development toward vaccination or cancer immunotherapy. Due to the intrinsic biodegradability combined with the high chemical control during the manufacturing process, these polycarbonate‐based nanogels may also be of great importance for clinical translation.
Background:
Concomitant radiation with BRAF inhibitor (BRAFi) therapy may increase radiation-induced side effects but also potentially improve tumour control in melanoma patients.
Methods:
A total of 155 patients with BRAF-mutated melanoma from 17 European skin cancer centres were retrospectively analysed. Out of these, 87 patients received concomitant radiotherapy and BRAFi (59 vemurafenib, 28 dabrafenib), while in 68 patients BRAFi therapy was interrupted during radiation (51 vemurafenib, 17 dabrafenib). Overall survival was calculated from the first radiation (OSRT) and from start of BRAFi therapy (OSBRAFi).
Results:
The median duration of BRAFi treatment interruption prior to radiotherapy was 4 days and lasted for 17 days. Median OSRT and OSBRAFi in the entire cohort were 9.8 and 12.6 months in the interrupted group and 7.3 and 11.5 months in the concomitant group (P=0.075/P=0.217), respectively. Interrupted vemurafenib treatment with a median OSRT and OSBRAFi of 10.1 and 13.1 months, respectively, was superior to concomitant vemurafenib treatment with a median OSRT and OSBRAFi of 6.6 and 10.9 months (P=0.004/P=0.067). Interrupted dabrafenib treatment with a median OSRT and OSBRAFi of 7.7 and 9.8 months, respectively, did not differ from concomitant dabrafenib treatment with a median OSRT and OSBRAFi of 9.9 and 11.6 months (P=0.132/P=0.404). Median local control of the irradiated area did not differ in the interrupted and concomitant BRAFi treatment groups (P=0.619). Skin toxicity of grade ≥2 (CTCAE) was significantly increased in patients with concomitant vemurafenib compared to the group with treatment interruption (P=0.002).
Conclusions:
Interruption of vemurafenib treatment during radiation was associated with better survival and less toxicity compared to concomitant treatment. Due to lower number of patients, the relevance of treatment interruption in dabrafenib treated patients should be further investigated. The results of this analysis indicate that treatment with the BRAFi vemurafenib should be interrupted during radiotherapy. Prospective studies are desperately needed.
Psoriasis is a frequent systemic inflammatory autoimmune disease characterized primarily by skin lesions with massive infiltration of leukocytes, but frequently also presents with cardiovascular comorbidities. Especially polymorphonuclear neutrophils (PMNs) abundantly infiltrate psoriatic skin but the cues that prompt PMNs to home to the skin are not well-defined. To identify PMN surface receptors that may explain PMN skin homing in psoriasis patients, we screened 332 surface antigens on primary human blood PMNs from healthy donors and psoriasis patients. We identified platelet surface antigens as a defining feature of psoriasis PMNs, due to a significantly increased aggregation of neutrophils and platelets in the blood of psoriasis patients. Similarly, in the imiquimod-induced experimental in vivo mouse model of psoriasis, disease induction promoted PMN-platelet aggregate formation. In psoriasis patients, disease incidence directly correlated with blood platelet counts and platelets were detected in direct contact with PMNs in psoriatic but not healthy skin. Importantly, depletion of circulating platelets in mice in vivo ameliorated disease severity significantly, indicating that both PMNs and platelets may be relevant for psoriasis pathology and disease severity.