Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Journal article (7)
Language
- English (7)
Keywords
Institute
- Medizinische Klinik und Poliklinik II (7)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (2)
- Institut für Hygiene und Mikrobiologie (1)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (1)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (1)
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II) (1)
- Pathologisches Institut (1)
Sonstige beteiligte Institutionen
Graft-versus-host disease (GVHD) is a major cause of transplant-related mortality (TRM) after allogeneic haematopoietic stem cell transplantation (HSCT) and presents a challenge in haploidentical HSCT. GVHD may be prevented by ex vivo graft T-cell depletion or in vivo depletion of proliferating lymphocytes. However, both approaches pose significant risks, particularly infections and relapse, compromising survival. A photodepletion strategy to eliminate alloreactive T cells from mismatched donor lymphocyte infusions (enabling administration without immunosuppression), was used to develop ATIR101, an adjunctive therapy for use after haploidentical HSCT. In this phase I dose-finding study, 19 adults (median age: 54 years) with high-risk haematological malignancies were treated with T-cell-depleted human leucocyte antigen-haploidentical myeloablative HSCT followed by ATIR101 at doses of 1 x 10(4)-5 x 10(6) CD3(+) cells/kg (median 31 days post-transplant). No patient received post-transplant immunosuppression or developed grade III/IV acute GVHD, demonstrating the feasibility of ATIR101 infusion for evaluation in two subsequent phase 2 studies. Additionally, we report long-term follow -up of patients treated with ATIR101 in this study. At 1 year, all 9 patients receiving doses of 0 center dot 3-2 x 10(6) CD3(+) cells/kg ATIR101 remained free of serious infections and after more than 8 years, TRM was 0%, relapse-related mortality was 33% and overall survival was 67% in these patients.
Cytomegalovirus (CMV) infection is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Measuring CMV-specific cellular immunity may improve the risk stratification and management of patients. IFN-γ ELISpot assays, based on the stimulation of peripheral blood mononuclear cells with CMV pp65 and IE-1 proteins or peptides, have been validated in clinical settings. However, it remains unclear to which extend the T-cell response to synthetic peptides reflect that mediated by full-length proteins processed by antigen-presenting cells. We compared the stimulating ability of pp65 and IE-1 proteins and corresponding overlapping peptides in 16 HSCT recipients using a standardized IFN-γ ELISpot assay. Paired qualitative test results showed an overall 74.4% concordance. Discordant results were mainly due to low-response tests, with one exception. One patient with early CMV reactivation and graft-versus-host disease, sustained CMV DNAemia and high CD8\(^+\) counts showed successive negative protein-based ELISpot results but a high and sustained response to IE-1 peptides. Our results suggest that the response to exogenous proteins, which involves their uptake and processing by antigen-presenting cells, more closely reflects the physiological response to CMV infection, while the response to exogenous peptides may lead to artificial in vitro T-cell responses, especially in strongly immunosuppressed patients.
Due to the rapidly increasing development and use of cellular products, there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies by isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells and seeding these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. We then were able to induce inflammation-mediated tissue damage by adding pre-stimulated, mismatched allogeneic lymphocytes and/or inflammatory cytokine-containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. This could be prevented by the addition of immunosuppressants to the models. Consequently, these models harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. They also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells, which would otherwise be limited to animal models. Thus, the current test platform, developed with the limitation that no professional antigen presenting cells are in place, could greatly reduce animal testing for investigation of novel immune therapies.
Here, we present the unique case of a 51‐year‐old German patient with multiple myeloma excreting Ascaris lumbricoides in his stool five weeks after allogeneic hematopoietic stem cell transplantation. Stool analysis remained negative for the presence of eggs, and there was no eosinophilia in the peripheral blood at any time around stem cell transplantation. The patient was commenced on a three‐day treatment with mebendazole, which was well tolerated. No serious interactions with the concomitant post‐transplant medication or negative effects on the hematopoiesis were observed, and the myeloma still is in complete remission. To our knowledge, this is the first report on excretion of A lumbricoides in the context of allogeneic stem cell transplantation. The case is remarkable with view to the fact that the parasite has supposedly survived all courses of myeloma treatment including autologous and allogeneic conditioning. Parasitosis with A lumbricoides has a worldwide prevalence of about a billion and is extremely rare in northern Europe. Possibly the patient got infected during a trip to Egypt years before multiple myeloma was diagnosed.
Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.
The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-alpha and IFN-gamma production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-alpha production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-alpha and IFN-gamma production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival.