Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (5)
- Doctoral Thesis (1)
Language
- English (6)
Keywords
- Acute tryptophan depletion (1)
- Anxiety-like behavior (1)
- Bipolar disorder (1)
- Hurst Exponent (1)
- Interferon-alpha (1)
- Knock-out mice (1)
- Koevolution (1)
- Long-term depression (1)
- MALDI imaging (1)
- Major depression (1)
Institute
EU-Project number / Contract (GA) number
- 634361 (1)
Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-Htt6PS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety- and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/2) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChipH Mouse Genome 430 2.0 Array. 5-Htt +/2 offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/2 mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/2 genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotype6PS manner, indicating a gene6environment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/2 genotype shows clear adaptive capacity, 5-Htt +/2 mice –particularly females– at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction.
Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-HttxPS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety-and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChip (R) Mouse Genome 430 2.0 Array. 5-Htt +/- offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/- mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotypexPS manner, indicating a genexenvironment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/- genotype shows clear adaptive capacity, 5-Htt +/- mice -particularly females-at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction.
Bacteriosponges contain large amounts of morphologically and phylogenetically diverse microorganisms in their mesohyl. The association is permanent, stable and highly specific, however, little is known about the establishment and maintenance of this association. The first aim of this Ph.D. thesis was to examine cospeciation between eight Aplysina species from the Mediterranean and Caribbean and their cyanobacterial associates. Host phylogeny was constructed with 18S rDNA and ITS-2 sequences using an alignment based on the secondary structure of the molecular markers and five different algorithms each. The genus Aplysina appeared as monophyletic. Aplysina sponges could be distinguished into a Caribbean and a Mediterranean cluster and a possible Tethyan origin is suggested. Comparison of the host phylogeny to the 16S rDNA phylogeny of the cyanobacterial strains revealed the lack of a congruent pattern. Therefore it is proposed that Aplysina sponges have not cospeciated with their cyanobacterial phylotypes and probably also not with other sponge specific microbes. The second aim of this Ph.D. thesis was to examine vertical transmission of microorganisms through reproductive stages of sponges. A general transmission electron microscopy (TEM) suvey revealed a clear correlation in that bacteriosponges always contained many microorganisms in their reproductive stages whereas non-bacteriosponges were always devoid of microbes in their reproductive stages. The transmission of the microbial community via sponge reproductive stages is concluded. Based on the previous results Ircinia felix was chosen for a detailed documentation of vertical transmission. I. felix larvae contained large amounts of microorganisms extracellularly in the central region whereas the outer region was almost free of microbes as shown by TEM. In I. felix juveniles microorganisms were located between densely packed sponge cells. The microbial profiles of I. felix adult, larvae, and juveniles were compared using denaturing gradient gel electrophoresis (DGGE). Similar microbial community patterns were found in adult and the respective larvae indicating that a large subset of the adult microbial community was vertically transmitted. In contrast, microbial communities of larvae pools released by different adult individuals seemed to be more variable. Juvenile banding patterns were a mixture of sponge specific and seawater microbes due to DNA extraction artefacts but demonstrated that at least half of the adult microbial community is present in the next generation. Finally, a comprehensive phylogenetic analysis was conducted by sequencing excised DGGE bands from adult and offspring of the bacteriosponges Agelas wiedenmayeri, I. felix, and Smenospongia aurea and by taking additional 16S rDNA sequences of Ectyoplasia ferox and Xestospongia muta (unpublished data of the laboratory). The identification of 24 vertical transmission clusters in at least 8 eubacterial phyla demonstrates that a complex and uniform microbial community is transferred via sponge reproductive stages. Vertical transmission is specific in that the microorganisms of bacteriosponges, but not those from seawater, are passed on, but unselective in that there appears to be no differentiation between individual sponge-specific lineages. In conclusion, vertical transmission points to a mutualistic and long-term association of bacteriosponges and complex microbial consortia.
Fractal phenomena can be found in numerous scientific areas including neuroscience. Fractals are structures, in which the whole has the same shape as its parts. A specific structure known as pink noise (also called fractal or 1/f noise) is one key fractal manifestation, exhibits both stability and adaptability, and can be addressed via the Hurst exponent (H). FMRI studies using H on regional fMRI time courses used fractality as an important characteristic to unravel neural networks from artificial noise. In this fMRI-study, we examined 103 healthy male students at rest and while performing the 5-choice serial reaction time task. We addressed fractality in a network associated with waiting impulsivity using the adaptive fractal analysis (AFA) approach to determine H. We revealed the fractal nature of the impulsivity network. Furthermore, fractality was influenced by individual impulsivity in terms of decreasing fractality with higher impulsivity in regions of top-down control (left middle frontal gyrus) as well as reward processing (nucleus accumbens and anterior cingulate cortex). We conclude that fractality as determined via H is a promising marker to quantify deviations in network functions at an early stage and, thus, to be able to inform preventive interventions before the manifestation of a disorder.
Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age‐related polyethism characterized by age‐related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age‐related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants’ central nervous system combined with brain extract analysis by Q‐Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide‐, neuropeptide‐like, and protein hormone prepropeptide genes, including a novel neuropeptide‐like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage‐specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.