Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (2)
Language
- English (2)
Keywords
- CA3 (1)
- RIM1α (1)
- SV pool (1)
- active zone (1)
- acute brain slices (1)
- electron tomography (1)
- epigenetics in the nervous system (1)
- epigenomics (1)
- gene expression (1)
- high-pressure freezing (1)
Institute
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (2)
- Center for Computational and Theoretical Biology (1)
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II) (1)
- Neurochirurgische Klinik und Poliklinik (1)
- Physiologisches Institut (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)
Emerging evidence emphasizes the strong impact of regulatory genomic elements in neurodevelopmental processes and the complex pathways of brain disorders. The present genome-wide quantitative trait loci analyses explore the \(cis\)-regulatory effects of single-nucleotide polymorphisms (SNPs) on DNA methylation (meQTL) and gene expression (eQTL) in 110 human hippocampal biopsies. We identify \(cis\)-meQTLs at 14,118 CpG methylation sites and \(cis\)-eQTLs for 302 3′-mRNA transcripts of 288 genes. Hippocampal \(cis\)-meQTL-CpGs are enriched in flanking regions of active promoters, CpG island shores, binding sites of the transcription factor CTCF and brain eQTLs. \(Cis\)-acting SNPs of hippocampal meQTLs and eQTLs significantly overlap schizophrenia-associated SNPs. Correlations of CpG methylation and RNA expression are found for 34 genes. Our comprehensive maps of \(cis\)-acting hippocampal meQTLs and eQTLs provide a link between disease-associated SNPs and the regulatory genome that will improve the functional interpretation of non-coding genetic variants in the molecular genetic dissection of brain disorders.
Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse
(2022)
Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{−/−}\) and wild-type mice. In RIM1α\(^{−/−}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0–2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{−/−}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs.