Refine
Has Fulltext
- yes (13)
Is part of the Bibliography
- yes (13)
Document Type
- Journal article (13)
Language
- English (13)
Keywords
- ADHD (2)
- Early-onset (2)
- OCD (2)
- anxiety (2)
- schoolchildren (2)
- selective mutism (2)
- 5-HT receptors (1)
- Attention-deficit/hyperactivity disorder (1)
- CNV (1)
- Childhood (1)
Institute
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (8)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (3)
- Lehrstuhl für Molekulare Psychiatrie (2)
- Neurologische Klinik und Poliklinik (2)
- Institut für Psychologie (1)
- Klinik und Poliklinik für Nuklearmedizin (1)
Background:
Early-onset obsessive-compulsive disorder (OCD) is one of the more common mental illnesses of children and adolescents, with prevalence of 1% to 3%. Its manifestations often lead to severe impairment and to conflict in the family. In this review, we summarize the manifestations, comorbidity, pathophysiology, and course of this disease as well as current modes of diagnosis and treatment.
Methods:
We selectively review the relevant literature and the German-language guidelines for the diagnosis and treatment of mental illnesses in children and adolescents.
Results:
Obsessive-compulsive manifestations are of many types and cause severe impairment. Comorbid mental disturbances are present in as many as 70% of patients. The disease takes a chronic course in more than 40% of patients. Cognitive behavioral therapy is the treatment of first choice, followed by combination pharmacotherapy including selective serotonin reuptake inhibitors (SSRI) and then by SSRI alone.
Conclusion:
OCD often begins in childhood or adolescence. There are empirically based neurobiological and cognitive-behavioral models of its pathophysiology. Multiaxial diagnostic evaluation permits early diagnosis. Behavioral therapy and medications are highly effective treatments, but the disorder nonetheless takes a chronic course in a large percentage of patients.
Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40–50 %. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.
The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.
A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out (St3gal5\(^{−/−}\)) mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids. Here, we sought to investigate the possibility that St3gal5\(^{−/−}\) mice might exhibit attention-deficit/hyperactivity disorder (ADHD)-like behaviours. In addition, we evaluated potential metabolic and electroencephalogram (EEG) abnormalities. St3gal5\(^{−/−}\) mice were subjected to behavioural testing, glucose tolerance tests, and the levels of expression of brain and peripheral A and B isoforms of the insulin receptor (IR) were measured. We found that St3gal5\(^{−/−}\) mice exhibit locomotor hyperactivity, impulsivity, neophobia, and anxiety-like behavior. The genotype also altered blood glucose levels and glucose tolerance. A sex bias was consistently found in relation to body mass and peripheral IR expression. Analysis of the EEG revealed an increase in amplitude in St3gal5\(^{−/−}\) mice. Together, St3gal5\(^{−/−}\) mice exhibit ADHD-like behaviours, altered metabolic and EEG measures providing a useful platform for better understanding of the contribution of brain gangliosides to ADHD and associated comorbidities.
The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{−/−}\)) mice. In heterozygous male mice (Tph2\(^{+/−}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/−}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/−}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2\(^{+/−}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.
Background
The spontaneously hypertensive rat (SHR) has been used to model changes in the central nervous system associated with cognitive-related disorders. Recent human and animal studies indicate a possible relationship between cognitive deficits, insulin resistance and hypertension. We aimed to investigate whether cognitively impaired SHRs develop central and/or peripheral insulin resistance and how their cognitive performance is influenced by the animal’s sex and age as well as strains used for comparison (Wistar and Wistar-Kyoto/WKY).
Methods
Three and seven-month-old SHR, Wistar, and WKY rats were studied for their cognitive performance using Morris Water Maze (MWM) and Passive Avoidance tests (PAT). Plasma glucose and insulin were obtained after oral glucose tolerance tests. Cerebral cortex, hippocampus, and striatum status of insulin-receptor (IR) β-subunit and glycogen synthase kinase-3β (GSK3β) and their phosphorylated forms were obtained via ELISA.
Results
SHRs performed poorly in MWM and PAT in comparison to both control strains but more pronouncedly compared to WKY. Females performed poorer than males and 7-month-old SHRs had poorer MWM performance than 3-month-old ones. Although plasma glucose levels remained unchanged, plasma insulin levels were significantly increased in the glucose tolerance test in 7-month-old SHRs. SHRs demonstrated reduced expression and increased activity of IRβ-subunit in cerebral cortex, hippocampus, and striatum with different regional changes in phospho/total GSK3β ratio, as compared to WKYs.
Conclusion
Results indicate that cognitive deficits in SHRs are accompanied by both central and peripheral insulin dysfunction, thus allowing for the speculation that SHRs might additionally be considered as a model of insulin resistance-induced type of dementia.
Tetrahydroisoquinolines (TIQs) such as salsolinol (SAL), norsalsolinol (NSAL) and their methylated derivatives N-methyl-norsalsolinol (NMNSAL) and N-methyl-salsolinol (NMSAL), modulate dopaminergic neurotransmission and metabolism in the central nervous system. Dopaminergic neurotransmission is thought to play an important role in the pathophysiology of chronic tic disorders, such as Tourette syndrome (TS). Therefore, the urinary concentrations of these TIQ derivatives were measured in patients with TS and patients with comorbid attention-deficit/hyperactivity disorder (TS + ADHD) compared with controls. Seventeen patients with TS, 12 with TS and ADHD, and 19 age-matched healthy controls with no medication took part in this study. Free levels of NSAL, NMNSAL, SAL, and NMSAL in urine were measured by a two-phase chromatographic approach. Furthermore, individual TIQ concentrations in TS patients were used in receiver-operating characteristics (ROC) curve analysis to examine the diagnostic value. NSAL concentrations were elevated significantly in TS [434.67 ± 55.4 nmol/l (standard error of mean = S.E.M.), two-way ANOVA, p < 0.0001] and TS + ADHD patients [605.18 ± 170.21 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] compared with controls [107.02 ± 33.18 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] and NSAL levels in TS + ADHD patients were elevated significantly in comparison with TS patients (two-way ANOVA, p = 0.017). NSAL demonstrated an AUC of 0.93 ± 0.046 (S.E.M) the highest diagnostic value of all metabolites for the diagnosis of TS. Our results suggest a dopaminergic hyperactivity underlying the pathophysiology of TS and ADHD. In addition, NSAL concentrations in urine may be a potential diagnostic biomarker of TS.
Family relationships in selective mutism — a comparison group study of children and adolescents
(2022)
Selective mutism (SM) mostly develops early in childhood and this has led to interest into whether there could be differences in relationships in families with SM compared to a control group without SM. Currently, there are merely few empirical studies examining family relationships in SM. A sample of 28 children and adolescents with SM was compared to 33 controls without SM. The groups were investigated using self-report questionnaires (Selective Mutism Questionnaire, Child-Parent Relationship Test—Child Version) for the assessment of SM and family relationships. Children with SM did not report a significantly different relationship to their mothers compared with the control group without SM. However, the scores in respect to the relationship to their fathers were significantly lower in cohesion, identification and autonomy compared with children without SM. Relationships in families with SM should be considered more in therapy.
Background:
Methylphenidate (MPH) is the first-line pharmacological treatment of attention-deficit/hyperactivity disorder (ADHD). MPH binds to the dopamine (DA) transporter (DAT), which has high density in the striatum. Assessments of the striatal dopamine transporter by single positron emission computed tomography (SPECT) in childhood and adolescent patients are rare but can provide insight on how the effects of MPH affect DAT availability. The aim of our within-subject study was to investigate the effect of MPH on DAT availability and how responsivity to MPH in DAT availability is linked to clinical symptoms and cognitive functioning.
Methods
Thirteen adolescent male patients (9–16 years) with a diagnosis of ADHD according to the DSM-IV and long-term stimulant medication (for at least 6 months) with MPH were assessed twice within 7 days using SPECT after application of I-123-β-CIT to examine DAT binding potential (DAT BP). SPECT measures took place in an on- and off-MPH status balanced for order across participants. A virtual reality continuous performance test was performed at each time point. Further clinical symptoms were assessed for baseline off-MPH.
Results
On-MPH status was associated with a highly significant change (−29.9%) of striatal DAT BP as compared to off-MPH (t = −4.12, p = 0.002). A more pronounced change in striatal DAT BP was associated with higher off-MPH attentional and externalizing symptom ratings (Pearson r = 0.68, p = 0.01). Striatal DAT BP off-MPH, but not on-MPH, was associated with higher symptom ratings (Pearson r = 0.56, p = 0.04).
Conclusion
Our findings corroborate previous reports from mainly adult samples that MPH changes striatal DAT BP availability and suggest higher off-MPH DAT BP, likely reflecting low baseline DA levels, as a marker of symptom severity.
Background
Obsessive-Compulsive Disorder (OCD) is a common and chronic disorder in which a person has uncontrollable, reoccurring thoughts and behaviours. It is a complex genetic condition and, in case of early onset (EO), the patients manifest a more severe phenotype, and an increased heritability. Large (>500 kb) copy number variations (CNVs) previously associated with autism and schizophrenia have been reported in OCD. Recently, rare CNVs smaller than 500 kb overlapping risk loci for other neurodevelopmental conditions have also been reported in OCD, stressing the importance of examining CNVs of any size range. The aim of this study was to further investigate the role of rare and small CNVs in the aetiology of EO-OCD.
Methods
We performed high-resolution chromosomal microarray analysis in 121 paediatric OCD patients and in 124 random controls to identify rare CNVs (>50 kb) which might contribute to EO-OCD.
Results
The frequencies and the size of the observed rare CNVs in the patients did not differ from the controls. However, we observed a significantly higher frequency of rare CNVs affecting brain related genes, especially deletions, in the patients (OR = 1.98, 95% CI 1.02–3.84; OR = 3.61, 95% CI 1.14–11.41, respectively). Similarly, enrichment-analysis of CNVs gene content, performed with three independent methods, confirmed significant clustering of predefined genes involved in synaptic/brain related functional pathways in the patients but not in the controls. In two patients we detected \(de-novo\) CNVs encompassing genes previously associated with different neurodevelopmental disorders \(\textit{NRXN1, ANKS1B, UHRF1BP1}\)).
Conclusions
Our results further strengthen the role of small rare CNVs, particularly deletions, as susceptibility factors for paediatric OCD.