Refine
Has Fulltext
- yes (9)
Is part of the Bibliography
- yes (9)
Document Type
- Journal article (6)
- Doctoral Thesis (2)
- Preprint (1)
Keywords
- Adenosin (1)
- Affenimmundefizienzvirus (1)
- Antisense (1)
- BBC3 (1)
- Bis-Pentafluorethylborate (1)
- Borate (1)
- C-terminal domain (1)
- DNA transcription (1)
- Elektrische Leitfähigkeit (1)
- Glutamat (1)
Institute
- Institut für Virologie und Immunbiologie (7)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Institut für Anorganische Chemie (1)
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Lehrstuhl für Biochemie (1)
- Physikalisches Institut (1)
EU-Project number / Contract (GA) number
- 721016 (2)
- CoG 721016–HERPES (1)
- ERC-2016-CoG 721016-HERPES (1)
Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a novel cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the latent-lytic switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture, which impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 was sufficient to trigger virus reactivation from latency thereby identifying it as a readily drugable master regulator of the herpesvirus latent-lytic switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders like myalgic encephalitis/chronic fatigue syndrome (ME/CFS) and Long-COVID.
Magnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties. Specific measurement of such binding states is of high interest but currently limited to highly sensitive techniques such as ELISA or flow cytometry, which are relatively inflexible, difficult to handle, expensive and time-consuming. Here we report a method named COMPASS (Critical-Offset-Magnetic-Particle-SpectroScopy), which is based on a critical offset magnetic field, enabling sensitive detection to minimal changes in mobility of MNP ensembles, e.g., resulting from SARS-CoV-2 antibodies binding to the S antigen on the surface of functionalized MNPs. With a sensitivity of 0.33 fmole/50 µl (≙7 pM) for SARS-CoV-2-S1 antibodies, measured with a low-cost portable COMPASS device, the proposed technique is competitive with respect to sensitivity while providing flexibility, robustness, and a measurement time of seconds per sample. In addition, initial results with blood serum demonstrate high specificity.
The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research.
Rhesus monkeys (M. mulatta) were i. v. infected with SIV mac251. Three phases of lymph node changes were observed. 1: physiological follicular hyperplasia (3 and 6 weeks p.i.). 2: Alterations of germinal centers: loss of follicular mantle zone, fragmentation or sclerosis (12 and 24 weeks p.i.). 3: Partial depletion of T-lymphocytes, accumulation of plasma cells, increased numbers of syncytial giant cells, hemophgocytosis in the sinuses (about 1 year p.i.). The thymus of the juvenile animals showed first changes 12 and 24 weeks after infection with focalloss of immature (and Ki-67 positive) cortical thymocytes, leading to severe accidental involution of the thymuses one year after infection and reduced numbers of Hassalls corpuscles. These investigations show the value of this animal model for the study of morphology and pathogenesis of AIDS.
A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery
(2021)
During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies.
Wir untersuchten die Konzentrationen an Adenosinrezeptoren und Glutamatrezeptoren bei Mäusen mit molekularen Defekten des Serotoninsystems. Dies betraf einerseits den Mangel an Serotonintransportern und andererseits den Mangel an Monoaminoxidase A (MAOA). Dabei verglichen wir Mäuse mit einem einzelnen Knockout des entsprechenden Gens mit Doppelknockout-Tieren, denen beide Gene fehlten. Desweiteren untersuchten wir die Veränderung der Konzentration an Glutamatrezeptoren bei alten Tieren mit einem Knockout des Serotonintransporters.
Background
Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse.
Results
Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis.
Conclusions
We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses.
Diese Arbeit beschäftigt sich mit der Synthese, Charakterisierung und Eigeschaften neuer Monopentafluorethylborat-Anionen der Form [C2F5BH2X]- (X= F, Cl, Br), [C2F5BH2(CN)]-, [C2F5BH(CN)2]-, [C2F5BH(CN)X]- (X= F, Cl, Br) und [C2F5B(CN)X2]- (X= Cl, Br)sowie den Bis-pentafluorethylborat-Anionen [(C2F5)2B(OMe)(CN)]-, [(C2F5)2BF(CN)]- und [(C2F5)2B(CN)2]-.
Von einigen dieser Verbindungen wurden Ionische Flüssigkeiten basierend auf dem 1-Ethyl-3-methylimidazolium-Kation synthetisiert und deren physikalischen Parameter ausführlich untersucht. Zudem wurden Pentafluorethylboran-Addukte mit verschiedenen Lewis-Basen der Form C2F5BH2-L (L= THF, SMe2, CH3CN, Pyridin, PPh3, CAAC, IDipp, SIDipp, Me4Im, (iPr)2Me2Im, tBu2Im) hergestellt welche zum Teil als Startmaterialien für die Synthese von Monopentafluorethylboraten verwendet wurden.
Lytic herpes simplex virus 1 (HSV-1) infection triggers disruption of transcription termination (DoTT) of most cellular genes, resulting in extensive intergenic transcription. Similarly, cellular stress responses lead to gene-specific transcription downstream of genes (DoG). In this study, we performed a detailed comparison of DoTT/DoG transcription between HSV-1 infection, salt and heat stress in primary human fibroblasts using 4sU-seq and ATAC-seq. Although DoTT at late times of HSV-1 infection was substantially more prominent than DoG transcription in salt and heat stress, poly(A) read-through due to DoTT/DoG transcription and affected genes were significantly correlated between all three conditions, in particular at earlier times of infection. We speculate that HSV-1 either directly usurps a cellular stress response or disrupts the transcription termination machinery in other ways but with similar consequences. In contrast to previous reports, we found that inhibition of Ca\(^{2+}\) signaling by BAPTA-AM did not specifically inhibit DoG transcription but globally impaired transcription. Most importantly, HSV-1-induced DoTT, but not stress-induced DoG transcription, was accompanied by a strong increase in open chromatin downstream of the affected poly(A) sites. In its extent and kinetics, downstream open chromatin essentially matched the poly(A) read-through transcription. We show that this does not cause but rather requires DoTT as well as high levels of transcription into the genomic regions downstream of genes. This raises intriguing new questions regarding the role of histone repositioning in the wake of RNA Polymerase II passage downstream of impaired poly(A) site recognition.