Refine
Has Fulltext
- yes (8)
Is part of the Bibliography
- yes (8)
Document Type
- Journal article (7)
- Doctoral Thesis (1)
Keywords
- microswimmer (2)
- multiparticle collision dynamics (2)
- propulsion (2)
- tsetse fly (2)
- viscosity (2)
- Biologie (1)
- Cytokeratin (1)
- Cytokeratine (1)
- GFP (1)
- Grün fluoreszierendes Protein (1)
African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate’s incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the ‘cellular waveform’. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites.
Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream
(2012)
Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy.
Trypanosome Motion Represents an Adaptation to the Crowded Environment ofthe Vertebrate Bloodstream
(2012)
Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy
In der vorliegenden Arbeit wurden Fusionsprodukte aus verschiedenen nukleolären Proteinen mit fluoreszierenden Proteinen (GFP und dsRed: rot fluoreszierendes Protein) in lebenden Zellen von Säugern und Xenopus laevis exprimiert und lokalisiert. Dadurch standen "Marker" für die drei Hauptkomponenten des Nukleolus zur Verfügung. Die dynamischen Eigenschaften dieser Fusionsproteine wurden quantitativ mit Hilfe von "Photobleaching"-Experimenten analysiert (FRAP: fluorescence recovery after photobleaching). Im einzelnen wurde durch die Untersuchung von RNA-Polymerase I der rDNA Transkriptionsort im fibrillären Zentrum des Nukleolus bestätigt. Die kinetischen Analysen von zwei pol I-Untereinheiten (RPA194 und RPA53) durch FRAP in transkriptionell aktiven und inaktiven Nukleoli erlaubten direkte Rückschlüsse auf die Transkriptionsdauer der rRNA-Gene in vivo. Die individuellen pol I-Untereinheiten bewegen sich rasch zwischen Nukleoplasma und Nukleolus und interagieren in den fibrillären Zentren mit dem rDNA-Promoter. Dann werden sie in produktive Transkriptionskomplexe integriert, die während der Elongationsphase, die bei Raumtemperatur etwa fünf Minuten dauert, stabil bleiben und erst nach der Termination dissoziieren. Zumindest ein Teil der Untereinheiten wandert anschließend in das Nukleoplasma. Die Ergebnisse widersprechen Modellen, welche die dichte fibrilläre Komponente als Transkriptionsort ansehen oder immobile RNA Polymerase I-Moleküle postulieren. Die Identifizierung des fibrillären Zentrums als rDNA-Transkriptionsort wurde durch die Koexpression der pol I-Untereinheiten mit Fibrillarin, einem Leitprotein der dichten fibrillären Komponente, ermöglicht. Durch die Expression der beiden Proteine als unterschiedlich fluoreszierende Fusionsproteine konnten die Orte der Transkription (die fibrillären Zentren) und die Orte der ersten Prozessierungsschritte, an denen Fibrillarin beteiligt ist (die dichte fibrilläre Komponente), in lebenden Zellen als direkt benachbarte, aber räumlich getrennte Kompartimente identifiziert werden. Die Rolle der granulären Komponente als Ort späterer Prozessierungschritte und Integration ribosomaler Proteine wurde durch die Expression von B23 und der ribosomalen Proteine L4, L5 und L10 verdeutlicht. Dabei wurde die nukleoläre Lokalisation von L10 erstmals belegt. In der Literatur wurde bisher angenommen, L10 würde erst im Cytoplasma mit Ribosomen assoziieren. Dies ist nicht der Fall, wie insbesondere Experimente mit Leptomycin B gezeigt haben. Diese Droge hemmt den CRM1-abhängigen Kernexport und führte zu einer deutlichen Akkumulation von L10-haltigen Präribosomen im Nukleoplasma von menschlichen Zellen. Schließlich sollte ein neues nukleoläres Protein von Xenopus laevis molekular charakterisiert werden, das mit verschiedenen Antikörpern in der granulären Komponente des Nukleolus lokalisiert wurde. Durch massenspektrometrische Analysen nach zweidimensionaler Gelelektrophorese wurden die Antigene überraschenderweise als Cytokeratin-Homologe identifiziert. Im Verlauf dieser Arbeit wurden drei bisher unveröffentlichte Cytokeratin 19 Isoformen von Xenopus kloniert, sequenziert und als GFP-Fusionsproteine exprimiert. Diese wurden allerdings wie reguläre Cytokeratine in cytoplasmatische Intermediärfilamente integriert und konnten, auch nach Translokation in den Zellkern durch ein experimentell eingefügtes Lokalisationssignal, nicht im Nukleolus nachgewiesen werden. Nach der Kotransfektion mit verschiedenen Zellkern-Proteinen wurde Cytokeratin 19 mit diesen in den Zellkern und mit nukleolären Proteinen in den Nukleolus transportiert. Obwohl diese Versuche auf einen "Huckepack"-Transportmechanismus für ein normalerweise cytoplasmatisches Protein hinweisen, konnte Cytokeratin 19 nicht spezifisch in der granulären Komponente des Nukleolus lokalisiert werden. Daher konnte bisher, trotz intensiver Bemühungen, die Identität des in der Immunfluoreszenz nachgewiesenen nukleolären Proteins leider nicht aufgeklärt werden.
The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome's tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite's development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far.
The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.
The human body is constantly attacked by pathogens. Various lines of defence have evolved, among which the immune system is principal. In contrast to most pathogens, the African trypanosomes thrive freely in the blood circulation, where they escape immune destruction by antigenic variation and incessant motility. These unicellular parasites are flagellate microswimmers that also withstand the harsh mechanical forces prevailing in the bloodstream. They undergo complex developmental cycles in the bloodstream and organs of the mammalian host, as well as the disease-transmitting tsetse fly. Each life cycle stage has been shaped by evolution for manoeuvring in distinct microenvironments. Here, we introduce trypanosomes as blueprints for nature-inspired design of trypanobots, micromachines that, in the future, could explore the human body without affecting its physiology. We review cell biological and biophysical aspects of trypanosome motion. While this could provide a basis for the engineering of microbots, their actuation and control still appear more like fiction than science. Here, we discuss potentials and challenges of trypanosome-inspired microswimmer robots.
We describe a system for the analysis of an important unicellular eukaryotic flagellate in a confining and crowded environment. The parasite Trypanosoma brucei is arguably one of the most versatile microswimmers known. It has unique properties as a single microswimmer and shows remarkable adaptations (not only in motility, but prominently so), to its environment during a complex developmental cycle involving two different hosts. Specific life cycle stages show fascinating collective behaviour, as millions of cells can be forced to move together in extreme confinement. Our goal is to examine such motile behaviour directly in the context of the relevant environments. Therefore, for the first time, we analyse the motility behaviour of trypanosomes directly in a widely used assay, which aims to evaluate the parasites behaviour in collectives, in response to as yet unknown parameters. In a step towards understanding whether, or what type of, swarming behaviour of trypanosomes exists, we customised the assay for quantitative tracking analysis of motile behaviour on the single-cell level. We show that the migration speed of cell groups does not directly depend on single-cell velocity and that the system remains to be simplified further, before hypotheses about collective motility can be advanced.