Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Keywords
- CNTF (1)
- Geruchssystem (1)
- Johnstons organ (1)
- Latrophilin (1)
- Neuroregeneration (1)
- Olfaktion (1)
- \(\alpha\)-latrotoxin (1)
- adhesion GPCR (1)
- binding (1)
- chordotonal organs (1)
Das olfaktorische System ist aufgrund seiner lebenslangen regenerativen Kapazität, seines Reichtums an neurotrophen Faktoren und der relativ guten Zugänglichkeit für Manipulationen ein attraktiver Gegenstand neurobiologischer Forschung. In der vorliegenden Arbeit wurde die Lokalisation und mögliche Funktion des ziliären neurotrophen Faktors (CNTF) in der primären Geruchsbahn mit Hilfe immunhistochemischer Methoden untersucht. Es konnte gezeigt werden, dass die CNTF-Ir bei Ratten und Mäusen in den olfaktorischen Gliazellen (Ensheathingzellen) lokalisiert ist. Elektronenmikroskopische Aufnahmen belegten ein zytoplasmatisches und nukleäres Vorkommen der CNTF-Ir innerhalb der EC. Ein neues und überraschendes Ergebnis der Arbeit ist, dass CNTF in individuellen olfaktorischen Neuronen vorkommt. Bislang wurde CNTF lediglich in Gliazellen des zentralen und peripheren Nervensystems nachgewiesen. Die weitere Charakterisierung der epithelialen CNTF-ir Neurone kennzeichnete diese als reife olfaktorische Nervenzellen. Die CNTF-Ir war mit dem olfaktorischen Markerprotein (OMP) kolokalisiert, einem Marker ausschließlich reifer ON und wies keine Kolokalisation mit dem Growth associated protein 43 (GAP-43) auf, dessen Expression unreife Riechsinneszellen kennzeichnet. CNTF könnte einerseits an lebenslang fortwährenden De- und/oder Regenerationsvorgängen des olfaktorischen Epithels beteiligt sein. Die Exposition der Riechschleimhaut gegenüber infektiösen, physikalischen und chemischen Noxen bedingt den ständigen Verlust olfaktorischer Neurone und deren lebenslange Regeneration aus neuronalen Vorläuferzellen im olfaktorischen Epithel. Die Zellkerne CNTF-ir ON wiesen in der Mehrzahl keine degenerativen Veränderungen wie Kondensierung und Fragmentierung auf, wie es bei geschädigten und untergehenden Zellen beobachtet wird. Im olfaktorischen Epithel zeigte sich des weiteren keine neuronale Kolokalisation von CNTF mit der aktivierten Caspase-3, einem Exekutorenzym der Apoptose, wie man es bei apoptotisch degenerierenden Neuronen findet. Nach Läsionen des olfaktorischen Epithels von Mäusen, die nekrotische Zelluntergänge auslösen, konnte kein gesteigertes Vorkommen von CNTF-ir ON gezeigt werden. Eine Einbindung von CNTF in die Mechanismen neuronaler Degeneration erscheint nach den Ergebnissen verschiedener Experimente wenig wahrscheinlich. Eine zweite Erklärung für das individuelle neuronale Auftreten der CNTF-Ir bot die Annahme, dass CNTF mit der Expression olfaktorischer Rezeptorproteine vergesellschaftet sein könnte. Dreidimensionale Rekonstruktionen von Paaren von BO bei Ratten und Mäusen zeigte, dass die Axone CNTF-ir ON in Glomeruli olfactorii projizierten, die bilateralsymmetrisch in beiden BO eines Tieres lokalisiert waren. Diese Symmetrie findet man ebenfalls bei den Projektionen der ON, die das gleiche olfaktorische Rezeptorprotein exprimieren. Die Lokalisation der CNTF-ir innervierten Glomeruli war interindividuell ähnlich, ihre Anzahl wies jedoch erhebliche Unterschiede auf. Dieses Phänomen lässt sich mit Befunden vergleichen, die im Rahmen von olfaktorischen Aktivitätsstudien bei Mäusen und Ratten erhoben wurden. Dabei beobachtete man eine Erhöhung der Anzahl aktivierter Glomeruli mit steigenden Geruchsstoffkonzentrationen. Auffallend war eine deutliche Übereinstimmung des Verteilungsmusters der CNTF-ir Glomeruli mit dem in der Literatur dargestellten Verteilungsmuster von Glomeruli, die durch Uringerüche aktiviert werden. Die räumliche Rekonstruktion der BO und die Darstellung der Position der CNTF-ir innervierten Glomeruli legt demnach eine neue mögliche Funktion von CNTF im olfaktorischen System nah: dessen Einbindung in Phänomene der Aktivität olfaktorischer Nervenzellen und plastischer Prozesse, die an der ersten Synapse der Geruchsbahn stattfinden. In der vorliegenden Arbeit konnte durch die Anwendung von klassischen Methoden der anatomisch-histologischen Forschung die Lokalisation von CNTF in der primären Geruchsbahn geklärt werden. Die Befunde führten zu weiteren Hypothesen hinsichtlich seiner funktionellen Einbindung in die olfaktorische Informationsverarbeitung, denen in zukünftigen Studien nachgegangen werden wird.
G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily.
Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.