• Contact
    • Imprint
    • Sitemap
      • Deutsch

UNIWUE UBWUE Universitätsbibliothek

  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen

Refine

Year of publication

  • 2018 (1)
  • 2017 (4)
  • 2015 (3)
  • 2014 (4)
  • 2013 (1)
  • 2012 (4)
  • 2011 (2)

Keywords

  • DNA methylation (2)
  • comparative genomics (2)
  • genetics (2)
  • neisseria meningitidis (2)
  • 3D modeling (1)
  • Aspergillus fumigatus (1)
  • B cell receptors (1)
  • Candida albicans (1)
  • Chlamydia pneumoniae (1)
  • DFNB68 (1)
+ more

Author

  • Müller, Tobias (19) (remove)

Institute

  • Theodor-Boveri-Institut für Biowissenschaften (19)
  • Institut für Humangenetik (6)
  • Institut für Hygiene und Mikrobiologie (3)
  • Institut für Pharmazie und Lebensmittelchemie (1)
  • Medizinische Klinik und Poliklinik II (1)

19 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
The Transcriptional Landscape of Chlamydia pneumoniae (2011)
Albrecht, Marco ; Sharma, Cynthia M. ; Dittrich, Marcus T. ; Müller, Tobias ; Reinhardt, Richard ; Vogel, Jörg ; Rudel, Thomas
Background: Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Results: Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for cotranscription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. Conclusions: The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen.
Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence (2017)
Ampattu, Biju Joseph ; Hagmann, Laura ; Liang, Chunguang ; Dittrich, Marcus ; Schlüter, Andreas ; Blom, Jochen ; Krol, Elizaveta ; Goesmann, Alexander ; Becker, Anke ; Dandekar, Thomas ; Müller, Tobias ; Schoen, Christoph
Background: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results: Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions: Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis.
Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster (2015)
Appel, Mirjam ; Scholz, Claus-Jürgen ; Müller, Tobias ; Dittrich, Marcus ; König, Christian ; Bockstaller, Marie ; Oguz, Tuba ; Khalili, Afshin ; Antwi-Adjei, Emmanuel ; Schauer, Tamas ; Margulies, Carla ; Tanimoto, Hiromu ; Yarali, Ayse
Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/or sequences covaried with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance- associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hairlike organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.
Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum (2012)
Beisser, Daniela ; Grohme, Markus A. ; Kopka, Joachim ; Frohme, Marcus ; Schill, Ralph O. ; Hengherr, Steffen ; Dandekar, Thomas ; Klau, Gunnar W. ; Dittrich, Marcus ; Müller, Tobias
Background: Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results: In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurablemetabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration. Conclusions: The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.
Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome (2011)
Biju, Joseph ; Schwarz, Roland ; Linke, Burkhard ; Blom, Jochen ; Becker, Anke ; Claus, Heike ; Goesmann, Alexander ; Frosch, Matthias ; Müller, Tobias ; Vogel, Ulrich ; Schoen, Christoph
Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.
Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment (2015)
Floren, Andreas ; Krüger, Dirk ; Müller, Tobias ; Dittrich, Marcus ; Rudloff, Renate ; Hoppe, Björn ; Linsenmair, Karl Eduard
Freshly cut beech deadwood was enriched in the canopy and on the ground in three cultural landscapes in Germany (Swabian Alb, Hainich-Dun, Schorfheide-Chorin) in order to analyse the diversity, distribution and interaction of wood-inhabiting fungi and beetles. After two years of wood decay 83 MOTUs (Molecular Operational Taxonomic Units) from 28 wood samples were identified. Flight Interception Traps (FITs) installed adjacent to the deadwood enrichments captured 29.465 beetles which were sorted to 566 species. Geographical 'region' was the main factor determining both beetle and fungal assemblages. The proportions of species occurring in all regions were low. Statistic models suggest that assemblages of both taxa differed between stratum and management praxis but their strength varied among regions. Fungal assemblages in Hainich-Dun, for which the data was most comprehensive, discriminated unmanaged from extensively managed and age-class forests (even-aged timber management) while canopy communities differed not from those near the ground. In contrast, the beetle assemblages at the same sites showed the opposite pattern. We pursued an approach in the search for fungus-beetle associations by computing cross correlations and visualize significant links in a network graph. These correlations can be used to formulate hypotheses on mutualistic relationships for example in respect to beetles acting as vectors of fungal spores.
Are Temperate Canopy Spiders Tree-Species Specific? (2014)
Floren, Andreas ; Mupepele, Anne-Christine ; Müller, Tobias ; Dittrich, Marcus
Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.
Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations (2012)
Förster, Frank ; Beisser, Daniela ; Grohme, Markus A. ; Liang, Chunguang ; Mali, Brahim ; Siegl, Alexander Matthias ; Engelmann, Julia C. ; Shkumatov, Alexander V. ; Schokraie, Elham ; Müller, Tobias ; Schnölzer, Martina ; Schill, Ralph O. ; Frohme, Marcus ; Dandekar, Thomas
Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade \(Milnesium\) \(tardigradum\) were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from \(Hypsibius\) \(dujardini\), revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for \(M.\) \(tardigradum\) are different from typical motifs known from higher animals. \(M.\) \(tardigradum\) and \(H.\) \(dujardini\) protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of \(M.\) \(tardigradum\). These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and \(M.\) \(tardigradum\) in particular so highly stress resistant.
Epigenetic signatures of gestational diabetes mellitus on cord blood methylation (2017)
Haertle, Larissa ; El Hajj, Nady ; Dittrich, Marcus ; Müller, Tobias ; Nanda, Indrajit ; Lehnen, Harald ; Haaf, Thomas
Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord bloods (FCBs) from GDM and control pregnancies. Methods and results: Using Illumina’s 450K methylation arrays and following correction for multiple testing, 65 CpG sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic phenotype than women with dietetically treated GDM. Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal exposures.
The conserved p.Arg108 residue in S1PR2 (DFNB68) is fundamental for proper hearing: evidence from a consanguineous Iranian family (2018)
Hofrichter, Michaela A. H. ; Mojarad, Majid ; Doll, Julia ; Grimm, Clemens ; Eslahi, Atiye ; Hosseini, Neda Sadat ; Rajati, Mohsen ; Müller, Tobias ; Dittrich, Marcus ; Maroofian, Reza ; Haaf, Thomas ; Vona, Barbara
Background: Genetic heterogeneity and consanguineous marriages make recessive inherited hearing loss in Iran the second most common genetic disorder. Only two reported pathogenic variants (c.323G>C, p.Arg108Pro and c.419A>G, p.Tyr140Cys) in the S1PR2 gene have previously been linked to autosomal recessive hearing loss (DFNB68) in two Pakistani families. We describe a segregating novel homozygous c.323G>A, p.Arg108Gln pathogenic variant in S1PR2 that was identified in four affected individuals from a consanguineous five generation Iranian family. Methods: Whole exome sequencing and bioinformatics analysis of 116 hearing loss-associated genes was performed in an affected individual from a five generation Iranian family. Segregation analysis and 3D protein modeling of the p.Arg108 exchange was performed. Results: The two Pakistani families previously identified with S1PR2 pathogenic variants presented profound hearing loss that is also observed in the affected Iranian individuals described in the current study. Interestingly, we confirmed mixed hearing loss in one affected individual. 3D protein modeling suggests that the p.Arg108 position plays a key role in ligand receptor interaction, which is disturbed by the p.Arg108Gln change. Conclusion: In summary, we report the third overall mutation in S1PR2 and the first report outside the Pakistani population. Furthermore, we describe a novel variant that causes an amino acid exchange (p.Arg108Gln) in the same amino acid residue as one of the previously reported Pakistani families (p.Arg108Pro). This finding emphasizes the importance of the p.Arg108 amino acid in normal hearing and confirms and consolidates the role of S1PR2 in autosomal recessive hearing loss.
  • 1 to 10

DINI-Zertifikat     OPUS4 Logo