Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Year of publication
- 2021 (2)
Document Type
- Journal article (2)
Language
- English (2)
Keywords
- Beryllium (1)
- EDA-NOCV (1)
- X-ray crystallography (1)
- antiaromaticity (1)
- aromaticity (1)
- beryllium (1)
- cyclic alkyl(amino)carbene (1)
- heterocycles (1)
- inorganic chemistry (1)
- radical (1)
The concepts of aromaticity and antiaromaticity have a long history, and countless demonstrations of these phenomena have been made with molecules based on elements from the p, d, and f blocks of the periodic table. In contrast, the limited oxidation‐state flexibility of the s‐block metals has long stood in the way of their participation in sophisticated π‐bonding arrangements, and truly antiaromatic systems containing s‐block metals are altogether absent or remain poorly defined. Using spectroscopic, structural, and computational techniques, we present herein the synthesis and authentication of a heterocyclic compound containing the alkaline earth metal beryllium that exhibits significant antiaromaticity, and detail its chemical reduction and Lewis‐base‐coordination chemistry.
The reduction of a cyclic alkyl(amino)carbene (CAAC)-stabilized organoberyllium chloride yields the first neutral beryllium radical, which was characterized by EPR, IR, UV/Vis spectroscopy and X-ray crystallography. DFT calculations show significant spin density at beryllium and confirm donor–acceptor bonding between an alkylberyllium radical fragment and a neutral CAAC ligand.