Refine
Has Fulltext
- yes (25)
Is part of the Bibliography
- yes (25)
Year of publication
Document Type
- Journal article (24)
- Doctoral Thesis (1)
Language
- English (25)
Keywords
- TerraSAR-X (5)
- PolSAR (4)
- Google Earth Engine (3)
- InSAR (3)
- Radarsat-2 (3)
- SAR (3)
- arctic (3)
- tundra (3)
- Arctic (2)
- Landsat (2)
The Sentinel-1 Satellite (S-1) of ESA's Copernicus Mission delivers freely available C-Band Synthetic Aperture Radar (SAR) data that are suited for interferometric applications (InSAR). The high geometric resolution of less than fifteen meter and the large coverage offered by the Interferometric Wide Swath mode (IW) point to new perspectives on the comprehension and understanding of surface changes, the quantification and monitoring of dynamic processes, especially in arid regions. The contribution shows the application of S-1 intensities and InSAR coherences in time series analysis for the delineation of changes related to fluvial morphodynamics in Damghan, Iran. The investigations were carried out for the period from April to October 2015 and exhibit the potential of the S-1 data for the identification of surface disturbances, mass movements and fluvial channel activity in the surroundings of the Damghan Playa. The Amplitude Change Detection highlighted extensive material movement and accumulation - up to sizes of more than 4,000 m in width - in the east of the Playa via changes in intensity. Further, the Coherence Change Detection technique was capable to indicate small-scale channel activity of the drainage system that was neither recognizable in the S-1 intensity nor the multispectral Landsat-8 data. The run off caused a decorrelation of the SAR signals and a drop in coherence. Seen from a morphodynamic point of view, the results indicated a highly dynamic system and complex tempo-spatial patterns were observed that will be subject of future analysis. Additionally, the study revealed the necessity to collect independent reference data on fluvial activity in order to train and adjust the change detector.
This study investigates a two component decomposition technique for HH/VV-polarized PolSAR (Polarimetric Synthetic Aperture Radar) data. The approach is a straight forward adaption of the Yamaguchi decomposition and decomposes the data into two scattering contributions: surface and double bounce under the assumption of a negligible vegetation scattering component in Tundra environments. The dependencies between the features of this two and the classical three component Yamaguchi decomposition were investigated for Radarsat-2 (quad) and TerraSAR-X (HH/VV) data for the Mackenzie Delta Region, Canada. In situ data on land cover were used to derive the scattering characteristics and to analyze the correlation among the PolSAR features. The double bounce and surface scattering features of the two and three component scattering model (derived from pseudo-HH/VV- and quad-polarized data) showed similar scattering characteristics and positively correlated-R2 values of 0.60 (double bounce) and 0.88 (surface scattering) were observed. The presence of volume scattering led to differences between the features and these were minimized for land cover classes of low vegetation height that showed little volume scattering contribution. In terms of separability, the quad-polarized Radarsat-2 data offered the best separation of the examined tundra land cover types and will be best suited for the classification. This is anticipated as it represents the largest feature space of all tested ones. However; the classes “wetland” and “bare ground” showed clear positions in the feature spaces of the C- and X-Band HH/VV-polarized data and an accurate classification of these land cover types is promising. Among the possible dual-polarization modes of Radarsat-2 the HH/VV was found to be the favorable mode for the characterization of the aforementioned tundra land cover classes due to the coherent acquisition and the preserved co-pol. phase. Contrary, HH/HV-polarized and VV/VH-polarized data were found to be best suited for the characterization of mixed and shrub dominated tundra.
The ecosystem of the high northern latitudes is affected by the recently changing environmental conditions. The Arctic has undergone a significant climatic change over the last decades. The land coverage is changing and a phenological response to the warming is apparent. Remotely sensed data can assist the monitoring and quantification of these changes. The remote sensing of the Arctic was predominantly carried out by the usage of optical sensors but these encounter problems in the Arctic environment, e.g. the frequent cloud cover or the solar geometry. In contrast, the imaging of Synthetic Aperture Radar is not affected by the cloud cover and the acquisition of radar imagery is independent of the solar illumination. The objective of this work was to explore how polarimetric Synthetic Aperture Radar (PolSAR) data of TerraSAR-X, TanDEM-X, Radarsat-2 and ALOS PALSAR and interferometric-derived digital elevation model data of the TanDEM-X Mission can contribute to collect meaningful information on the actual state of the Arctic Environment. The study was conducted for Canadian sites of the Mackenzie Delta Region and Banks Island and in situ reference data were available for the assessment. The up-to-date analysis of the PolSAR data made the application of the Non-Local Means filtering and of the decomposition of co-polarized data necessary.
The Non-Local Means filter showed a high capability to preserve the image values, to keep the edges and to reduce the speckle. This supported not only the suitability for the interpretation but also for the classification. The classification accuracies of Non-Local Means filtered data were in average +10% higher compared to unfiltered images. The correlation of the co- and quad-polarized decomposition features was high for classes with distinct surface or double bounce scattering and a usage of the co-polarized data is beneficial for regions of natural land coverage and for low vegetation formations with little volume scattering. The evaluation further revealed that the X- and C-Band were most sensitive to the generalized land cover classes. It was found that the X-Band data were sensitive to low vegetation formations with low shrub density, the C-Band data were sensitive to the shrub density and the shrub dominated tundra. In contrast, the L-Band data were less sensitive to the land cover. Among the different dual-polarized data the HH/VV-polarized data were identified to be most meaningful for the characterization and classification, followed by the HH/HV-polarized and the VV/VH-polarized data. The quad-polarized data showed highest sensitivity to the land cover but differences to the co-polarized data were small. The accuracy assessment showed that spectral information was required for accurate land cover classification. The best results were obtained when spectral and radar information was combined. The benefit of including radar data in the classification was up to +15% accuracy and most significant for the classes wetland and sparse vegetated tundra. The best classifications were realized with quad-polarized C-Band and multispectral data and with co-polarized X-Band and multispectral data. The overall accuracy was up to 80% for unsupervised and up to 90% for supervised classifications. The results indicated that the shortwave co-polarized data show promise for the classification of tundra land cover since the polarimetric information is sensitive to low vegetation and the wetlands. Furthermore, co-polarized data provide a higher spatial resolution than the quad-polarized data.
The analysis of the intermediate digital elevation model data of the TanDEM-X showed a high potential for the characterization of the surface morphology. The basic and relative topographic features were shown to be of high relevance for the quantification of the surface morphology and an area-wide application is feasible. In addition, these data were of value for the classification and delineation of landforms. Such classifications will assist the delineation of geomorphological units and have potential to identify locations of actual and future morphologic activity.
In this work the potential of polarimetric Synthetic Aperture Radar (PolSAR) data of dual-polarized TerraSAR-X (HH/VV) and quad-polarized Radarsat-2 was examined in combination with multispectral Landsat 8 data for unsupervised and supervised classification of tundra land cover types of Richards Island, Canada. The classification accuracies as well as the backscatter and reflectance characteristics were analyzed using reference data collected during three field work campaigns and include in situ data and high resolution airborne photography. The optical data offered an acceptable initial accuracy for the land cover classification. The overall accuracy was increased by the combination of PolSAR and optical data and was up to 71% for unsupervised (Landsat 8 and TerraSAR-X) and up to 87% for supervised classification (Landsat 8 and Radarsat-2) for five tundra land cover types. The decomposition features of the dual and quad-polarized data showed a high sensitivity for the non-vegetated substrate (dominant surface scattering) and wetland vegetation (dominant double bounce and volume scattering). These classes had high potential to be automatically detected with unsupervised classification techniques.
Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR (TerraSAR-X) data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10%–15% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75% are achievable.
Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria
(2022)
The increasing availability and variety of global satellite products provide a new level of data with different spatial, temporal, and spectral resolutions; however, identifying the most suited resolution for a specific application consumes increasingly more time and computation effort. The region’s cloud coverage additionally influences the choice of the best trade-off between spatial and temporal resolution, and different pixel sizes of remote sensing (RS) data may hinder the accurate monitoring of different land cover (LC) classes such as agriculture, forest, grassland, water, urban, and natural-seminatural. To investigate the importance of RS data for these LC classes, the present study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16 days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16 days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, eight day)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions’ cloud or shadow gaps without losing spatial information. These eight synthetic NDVI STARFM products (2: high pair multiply 4: low pair) offer a spatial resolution of 10 or 30 m and temporal resolution of 1, 8, or 16 days for the entire state of Bavaria (Germany) in 2019. Due to their higher revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2 (overall R\(^2\) = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate results than Landsat (overall R\(^2\) = 0.61, and RMSE = 0.13). Likewise, for the agriculture class, synthetic products obtained using Sentinel-2 resulted in higher accuracy than Landsat except for L-MOD13Q1 (R\(^2\) = 0.62, RMSE = 0.11), resulting in similar accuracy preciseness as S-MOD13Q1 (R\(^2\) = 0.68, RMSE = 0.13). Similarly, comparing L-MOD13Q1 (R\(^2\) = 0.60, RMSE = 0.05) and S-MOD13Q1 (R\(^2\) = 0.52, RMSE = 0.09) for the forest class, the former resulted in higher accuracy and precision than the latter. Conclusively, both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest monitoring; however, the spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent and faster than that of S-MOD13Q1 with the 10-m spatial resolution.
Snow cover (SC) and timing of snowmelt are key regulators of a wide range of Arctic ecosystem functions. Both are strongly influenced by the amplified Arctic warming and essential variables to understand environmental changes and their dynamics. This study evaluates the potential of Sentinel-1 (S-1) synthetic aperture radar (SAR) time series for monitoring SC depletion and snowmelt with high spatiotemporal resolution to capture their understudied small-scale heterogeneity. We use 97 dual-polarized S-1 SAR images acquired over northeastern Greenland and 94 over southwestern Greenland in the interferometric wide swath mode from the years 2017 and 2018. Comparison of S-1 intensity against SC fraction maps derived from orthorectified terrestrial time-lapse imagery indicates that SAR backscatter can increase before a decrease in SC fraction is observed. Hence, the increase in backscatter is related to changing snowpack properties during the runoff phase as well as decreasing SC fraction. We here present a novel empirical approach based on the temporal evolution of the SAR signal to identify start of runoff (SOR), end of snow cover (EOS) and SC extent for each S-1 observation date during melt using backscatter thresholds as well as the derivative. Comparison of SC with orthorectified time-lapse imagery indicates that HV polarization outperforms HH when using a global threshold. The derivative avoids manual selection of thresholds and adapts to different environmental settings and seasonal conditions. With a global configuration (threshold: 4 dB; polarization: HV) as well as with the derivative, the overall accuracy of SC maps was in all cases above 75 % and in more than half of cases above 90 %. Based on the physical principle of SAR backscatter during snowmelt, our approach is expected to work well in other low-vegetation areas and, hence, could support large-scale SC monitoring at high spatiotemporal resolution (20 m, 6 d) with high accuracy.
Arctic permafrost coasts become increasingly vulnerable due to environmental drivers such as the reduced sea-ice extent and duration as well as the thawing of permafrost itself. A continuous quantification of the erosion process on large to circum-Arctic scales is required to fully assess the extent and understand the consequences of eroding permafrost coastlines. This study presents a novel approach to quantify annual Arctic coastal erosion and build-up rates based on Sentinel-1 (S1) Synthetic Aperture RADAR (SAR) backscatter data, in combination with Deep Learning (DL) and Change Vector Analysis (CVA). The methodology includes the generation of a high-quality Arctic coastline product via DL, which acted as a reference for quantifying coastal erosion and build-up rates from annual median and standard deviation (sd) backscatter images via CVA. The analysis was applied on ten test sites distributed across the Arctic and covering about 1038 km of coastline. Results revealed maximum erosion rates of up to 160 m for some areas and an average erosion rate of 4.37 m across all test sites within a three-year temporal window from 2017 to 2020. The observed erosion rates within the framework of this study agree with findings published in the previous literature. The proposed methods and data can be applied on large scales and, prospectively, even for the entire Arctic. The generated products may be used for quantifying the loss of frozen ground, estimating the release of stored organic material, and can act as a basis for further related studies in Arctic coastal environments.
Illegal small-scale mining (galamsey) in South-Western Ghana has grown tremendously in the last decade and caused significant environmental degradation. Excessive cloud cover in the area has limited the use of optical remote sensing data to map and monitor the extent of these activities. This study investigated the use of annual time-series Sentinel-1 data to map and monitor illegal mining activities along major rivers in South-Western Ghana between 2015 and 2019. A change detection approach, based on three time-series features — minimum, mean, maximum — was used to compute a backscatter threshold value suitable to identify/detect mining-induced land cover changes in the study area. Compared to the mean and maximum, the minimum time-series feature (in both VH and VV polarization) was found to be more sensitive to changes in backscattering within the period of investigation. Our approach permitted the detection of new illegal mining areas on an annual basis. A backscatter threshold value of +1.65 dB was found suitable for detecting illegal mining activities in the study area. Application of this threshold revealed illegal mining area extents of 102 km\(^2\), 60 km\(^2\) and 33 km\(^2\) for periods 2015/2016–2016/2017, 2016/2017–2017/2018 and 2017/2018–2018/2019, respectively. The observed decreasing trend in new illegal mining areas suggests that efforts at stopping illegal mining yielded positive results in the period investigated. Despite the advantages of Synthetic Aperture Radar data in monitoring phenomena in cloud-prone areas, our analysis revealed that about 25% of the Sentinel-1 data, mostly acquired in March and October (beginning and end of rainy season respectively), were unusable due to atmospheric effects from high intensity rainfall events. Further investigation in other geographies and climatic regions is needed to ascertain the susceptibility of Sentinel-1 data to atmospheric conditions.