Refine
Has Fulltext
- yes (23)
Is part of the Bibliography
- yes (23)
Year of publication
Document Type
- Journal article (22)
- Doctoral Thesis (1)
Language
- English (23)
Keywords
- TerraSAR-X (5)
- Google Earth Engine (3)
- PolSAR (3)
- Radarsat-2 (3)
- arctic (3)
- tundra (3)
- Arctic (2)
- InSAR (2)
- SAR (2)
- Sentinel-1 (2)
Numerous ephemeral rivers and thousands of natural pans characterize the transboundary Iishana-System of the Cuvelai Basin between Namibia and Angola. After the rainy season, surface water stored in pans is often the only affordable water source for many people in rural areas. High inter- and intra-annual rainfall variations in this semiarid environment provoke years of extreme flood events and long periods of droughts. Thus, the issue of water availability is playing an increasingly important role in one of the most densely populated and fastest growing regions in southwestern Africa. Currently, there is no transnational approach to quantifying the potential storage and supply functions of the Iishana-System. To bridge these knowledge gaps and to increase the resilience of the local people's livelihood, suitable pans for expansion as intermediate storage were identified and their metrics determined. Therefore, a modified Blue Spot Analysis was performed, based on the high-resolution TanDEM-X digital elevation model. Further, surface area–volume ratio calculations were accomplished for finding suitable augmentation sites in a first step. The potential water storage volume of more than 190,000 pans was calculated at 1.9 km\(^3\). Over 2200 pans were identified for potential expansion to facilitate increased water supply and flood protection in the future.
Mapping buried paleogeographical features of the Nile Delta (Egypt) using the Landsat archive
(2020)
The contribution highlights the use of Landsat spectral-temporal metrics (STMs) for the detection of surface anomalies that are potentially related to buried near-surface paleogeomorphological deposits in the Nile Delta (Egypt), in particular for a buried river branch close to Buto. The processing was completed in the Google Earth Engine (GEE) for the entire Nile Delta and for selected seasons of the year (summer/winter) using Landsat data from 1985 to 2019. We derived the STMs of the tasseled cap transformation (TC), the Normalized Difference Wetness Index (NDWI), and the Normalized Difference Vegetation Index (NDVI). These features were compared to historical topographic maps of the Survey of Egypt, CORONA imagery, the digital elevation model of the TanDEM-X mission, and modern high-resolution satellite imagery. The results suggest that the extent of channels is best revealed when differencing the median NDWI between summer (July/August) and winter (January/February) seasons (ΔNDWI). The observed difference is likely due to lower soil/plant moisture during summer, which is potentially caused by coarser-grained deposits and the morphology of the former levee. Similar anomalies were found in the immediate surroundings of several Pleistocene sand hills (“geziras”) and settlement mounds (“tells”) of the eastern delta, which allowed some mapping of the potential near-surface continuation. Such anomalies were not observed for the surroundings of tells of the western Nile Delta. Additional linear and meandering ΔNDWI anomalies were found in the eastern Nile Delta in the immediate surroundings of the ancient site of Bubastis (Tell Basta), as well as several kilometers north of Zagazig. These anomalies might indicate former courses of Nile river branches. However, the ΔNDWI does not provide an unambiguous delineation.
This study investigates synthetic aperture radar (SAR) time series of the Sentinel-1 mission acquired over the Atacama Desert, Chile, between March 2015 and December 2018. The contribution analyzes temporal and spatial variations of Sentinel-1 interferometric SAR (InSAR) coherence and exemplarily illustrates factors that are responsible for observed signal differences. The analyses are based on long temporal baselines (365–1090 days) and temporally dense time series constructed with short temporal baselines (12–24 days). Results are compared to multispectral data of Sentinel-2, morphometric features of the digital elevation model (DEM) TanDEM-X WorldDEM™, and to a detailed governmental geographic information system (GIS) dataset of the local hydrography. Sentinel-1 datasets are suited for generating extensive, nearly seamless InSAR coherence mosaics covering the entire Atacama Desert (>450 × 1100 km) at a spatial resolution of 20 × 20 meter per pixel. Temporal baselines over several years lead only to very minor decorrelation, indicating a very high signal stability of C-Band in this region, especially in the hyperarid uplands between the Coastal Cordillera and the Central Depression. Signal decorrelation was associated with certain types of surface cover (e.g., water or aeolian deposits) or with actual surface dynamics (e.g., anthropogenic disturbance (mining) or fluvial activity and overland flow). Strong rainfall events and fluvial activity in the periods 2015 to 2016 and 2017 to 2018 caused spatial patterns with significant signal decorrelation; observed linear coherence anomalies matched the reference channel network and indicated actual episodic and sporadic discharge events. In the period 2015–2016, area-wide loss of coherence appeared as strip-like patterns of more than 80 km length that matched the prevailing wind direction. These anomalies, and others observed in that period and in the period 2017–2018, were interpreted to be caused by overland flow of high magnitude, as their spatial location matched well with documented heavy rainfall events that showed cumulative precipitation amounts of more than 20 mm.
This study compares the performance of the five widely used crop growth models (CGMs): World Food Studies (WOFOST), Coalition for Environmentally Responsible Economies (CERES)-Wheat, AquaCrop, cropping systems simulation model (CropSyst), and the semi-empiric light use efficiency approach (LUE) for the prediction of winter wheat biomass on the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site, Germany. The study focuses on the use of remote sensing (RS) data, acquired in 2015, in CGMs, as they offer spatial information on the actual conditions of the vegetation. Along with this, the study investigates the data fusion of Landsat (30 m) and Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m) data using the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) fusion algorithm. These synthetic RS data offer a 30-m spatial and one-day temporal resolution. The dataset therefore provides the necessary information to run CGMs and it is possible to examine the fine-scale spatial and temporal changes in crop phenology for specific fields, or sub sections of them, and to monitor crop growth daily, considering the impact of daily climate variability. The analysis includes a detailed comparison of the simulated and measured crop biomass. The modelled crop biomass using synthetic RS data is compared to the model outputs using the original MODIS time series as well. On comparison with the MODIS product, the study finds the performance of CGMs more reliable, precise, and significant with synthetic time series. Using synthetic RS data, the models AquaCrop and LUE, in contrast to other models, simulate the winter wheat biomass best, with an output of high R2 (>0.82), low RMSE (<600 g/m\(^2\)) and significant p-value (<0.05) during the study period. However, inputting MODIS data makes the models underperform, with low R2 (<0.68) and high RMSE (>600 g/m\(^2\)). The study shows that the models requiring fewer input parameters (AquaCrop and LUE) to simulate crop biomass are highly applicable and precise. At the same time, they are easier to implement than models, which need more input parameters (WOFOST and CERES-Wheat).
In this work the potential of polarimetric Synthetic Aperture Radar (PolSAR) data of dual-polarized TerraSAR-X (HH/VV) and quad-polarized Radarsat-2 was examined in combination with multispectral Landsat 8 data for unsupervised and supervised classification of tundra land cover types of Richards Island, Canada. The classification accuracies as well as the backscatter and reflectance characteristics were analyzed using reference data collected during three field work campaigns and include in situ data and high resolution airborne photography. The optical data offered an acceptable initial accuracy for the land cover classification. The overall accuracy was increased by the combination of PolSAR and optical data and was up to 71% for unsupervised (Landsat 8 and TerraSAR-X) and up to 87% for supervised classification (Landsat 8 and Radarsat-2) for five tundra land cover types. The decomposition features of the dual and quad-polarized data showed a high sensitivity for the non-vegetated substrate (dominant surface scattering) and wetland vegetation (dominant double bounce and volume scattering). These classes had high potential to be automatically detected with unsupervised classification techniques.
The ecosystem of the high northern latitudes is affected by the recently changing environmental conditions. The Arctic has undergone a significant climatic change over the last decades. The land coverage is changing and a phenological response to the warming is apparent. Remotely sensed data can assist the monitoring and quantification of these changes. The remote sensing of the Arctic was predominantly carried out by the usage of optical sensors but these encounter problems in the Arctic environment, e.g. the frequent cloud cover or the solar geometry. In contrast, the imaging of Synthetic Aperture Radar is not affected by the cloud cover and the acquisition of radar imagery is independent of the solar illumination. The objective of this work was to explore how polarimetric Synthetic Aperture Radar (PolSAR) data of TerraSAR-X, TanDEM-X, Radarsat-2 and ALOS PALSAR and interferometric-derived digital elevation model data of the TanDEM-X Mission can contribute to collect meaningful information on the actual state of the Arctic Environment. The study was conducted for Canadian sites of the Mackenzie Delta Region and Banks Island and in situ reference data were available for the assessment. The up-to-date analysis of the PolSAR data made the application of the Non-Local Means filtering and of the decomposition of co-polarized data necessary.
The Non-Local Means filter showed a high capability to preserve the image values, to keep the edges and to reduce the speckle. This supported not only the suitability for the interpretation but also for the classification. The classification accuracies of Non-Local Means filtered data were in average +10% higher compared to unfiltered images. The correlation of the co- and quad-polarized decomposition features was high for classes with distinct surface or double bounce scattering and a usage of the co-polarized data is beneficial for regions of natural land coverage and for low vegetation formations with little volume scattering. The evaluation further revealed that the X- and C-Band were most sensitive to the generalized land cover classes. It was found that the X-Band data were sensitive to low vegetation formations with low shrub density, the C-Band data were sensitive to the shrub density and the shrub dominated tundra. In contrast, the L-Band data were less sensitive to the land cover. Among the different dual-polarized data the HH/VV-polarized data were identified to be most meaningful for the characterization and classification, followed by the HH/HV-polarized and the VV/VH-polarized data. The quad-polarized data showed highest sensitivity to the land cover but differences to the co-polarized data were small. The accuracy assessment showed that spectral information was required for accurate land cover classification. The best results were obtained when spectral and radar information was combined. The benefit of including radar data in the classification was up to +15% accuracy and most significant for the classes wetland and sparse vegetated tundra. The best classifications were realized with quad-polarized C-Band and multispectral data and with co-polarized X-Band and multispectral data. The overall accuracy was up to 80% for unsupervised and up to 90% for supervised classifications. The results indicated that the shortwave co-polarized data show promise for the classification of tundra land cover since the polarimetric information is sensitive to low vegetation and the wetlands. Furthermore, co-polarized data provide a higher spatial resolution than the quad-polarized data.
The analysis of the intermediate digital elevation model data of the TanDEM-X showed a high potential for the characterization of the surface morphology. The basic and relative topographic features were shown to be of high relevance for the quantification of the surface morphology and an area-wide application is feasible. In addition, these data were of value for the classification and delineation of landforms. Such classifications will assist the delineation of geomorphological units and have potential to identify locations of actual and future morphologic activity.
Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR (TerraSAR-X) data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10%–15% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75% are achievable.
River deltas belong to the most densely settled places on earth. Although they only account for 5% of the global land surface, over 550 million people live in deltas. These preferred livelihood locations, which feature flat terrain, fertile alluvial soils, access to fluvial and marine resources, a rich wetland biodiversity and other advantages are, however, threatened by numerous internal and external processes. Socio-economic development, urbanization, climate change induced sea level rise, as well as flood pulse changes due to upstream water diversion all lead to changes in these highly dynamic systems. A thorough understanding of a river delta's general setting and intra-annual as well as long-term dynamic is therefore crucial for an informed management of natural resources. Here, remote sensing can play a key role in analyzing and monitoring these vast areas at a global scale. The goal of this study is to demonstrate the potential of intra-annual time series analyses at dense temporal, but coarse spatial resolution for inundation characterization in five river deltas located in four different countries. Based on 250 m MODIS reflectance data we analyze inundation dynamics in four densely populated Asian river deltas-namely the Yellow River Delta (China), the Mekong Delta (Vietnam), the Irrawaddy Delta (Myanmar), and the Ganges-Brahmaputra (Bangladesh, India)-as well as one very contrasting delta: the nearly uninhabited polar Mackenzie Delta Region in northwestern Canada for the complete time span of one year (2013). A complex processing chain of water surface derivation on a daily basis allows the generation of intra-annual time series, which indicate inundation duration in each of the deltas. Our analyses depict distinct inundation patterns within each of the deltas, which can be attributed to processes such as overland flooding, irrigation agriculture, aquaculture, or snowmelt and thermokarst processes. Clear differences between mid-latitude, subtropical, and polar deltas are illustrated, and the advantages and limitations of the approach for inundation derivation are discussed.
In this study, polarimetric Synthetic Aperture Radar (PolSAR) data at X-, C- and L-Bands, acquired by the satellites: TerraSAR-X (2011), Radarsat-2 (2011), ALOS (2010) and ALOS-2 (2016), were used to characterize the tundra land cover of a test site located close to the town of Tuktoyaktuk, NWT, Canada. Using available in situ ground data collected in 2010 and 2012, we investigate PolSAR scattering characteristics of common tundra land cover classes at X-, C- and L-Bands. Several decomposition features of quad-, co-, and cross-polarized data were compared, the correlation between them was investigated, and the class separability offered by their different feature spaces was analyzed. Certain PolSAR features at each wavelength were sensitive to the land cover and exhibited distinct scattering characteristics. Use of shorter wavelength imagery (X and C) was beneficial for the characterization of wetland and tundra vegetation, while L-Band data highlighted differences of the bare ground classes better. The Kennaugh Matrix decomposition applied in this study provided a unified framework to store, process, and analyze all data consistently, and the matrix offered a favorable feature space for class separation. Of all elements of the quad-polarized Kennaugh Matrix, the intensity based elements K0, K1, K2, K3 and K4 were found to be most valuable for class discrimination. These elements contributed to better class separation as indicated by an increase of the separability metrics squared Jefferys Matusita Distance and Transformed Divergence. The increase in separability was up to 57% for Radarsat-2 and up to 18% for ALOS-2 data.