Refine
Has Fulltext
- yes (9)
Is part of the Bibliography
- yes (9)
Document Type
- Journal article (8)
- Doctoral Thesis (1)
Language
- English (9)
Keywords
- 3D printing (2)
- bioprinting (2)
- (AB)\(_{n}\) segmented copolymers (1)
- 3D Bioprinting (1)
- 3D-Druck (1)
- Biofabrication (1)
- Elektrospinnen (1)
- Melt Electrowriting (1)
- additive manufacturing (1)
- biocompatibility (1)
Institute
Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion‐Based Additive Manufacturing
(2021)
Several manufacturing technologies beneficially involve processing from the melt, including extrusion‐based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt‐processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)‐based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt‐processing techniques. Using extrusion‐based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1–15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well‐defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers.
Bioprinting has emerged as a valuable threedimensional (3D) biomanufacturing method to fabricate complex hierarchical cell-containing constructs. Spanning from basic research to clinical translation, sterile starting materials are crucial. In this study, we present pharmacopeia compendial sterilization methods for the commonly used bioink component alginate. Autoclaving (sterilization in saturated steam) and sterile filtration followed by lyophilization as well as the pharmacopeia non-compendial method, ultraviolet (UV)-irradiation for disinfection, were assessed. The impact of the sterilization methods and their effects on physicochemical and rheological properties, bioprinting outcome, and sterilization efficiency of alginate were detailed. Only sterile filtration followed by lyophilization as the sterilization method retained alginate's physicochemical properties and bioprinting behavior while resulting in a sterile outcome. This set of methods provides a blueprint for the analysis of sterilization effects on the rheological and physicochemical pattern of bioink components and is easily adjustable for other polymers used in the field of biofabrication in the future.
In this study, we evaluate hydrogels based on oxidized hyaluronic acid, cross-linked with adipic acid dihydrazide, for their suitability as bioinks for 3D bioprinting. Aldehyde containing hyaluronic acid (AHA) is synthesized and cross-linked via Schiff Base chemistry with bifunctional adipic acid dihydrazide (ADH) to form a mechanically stable hydrogel with good printability. Mechanical and rheological properties of the printed and casted hydrogels are tunable depending on the concentrations of AHA and ADH cross-linkers.
Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing
(2015)
The aim of this study was to explore the lower resolution limits of an electrohydrodynamic process combined with direct writing technology of polymer melts. Termed melt electrospinning writing, filaments are deposited layer-by-layer to produce discrete three-dimensional scaffolds for in vitro research. Through optimization of the parameters (flow rate, spinneret diameter, voltage, collector distance) for poly-ϵ-caprolactone, we could direct-write coherent scaffolds with ultrafine filaments, the smallest being 817 ± 165 nm. These low diameter filaments were deposited to form box-structures with a periodicity of 100.6 ± 5.1 μm and a height of 80 μm (50 stacked filaments; 100 overlap at intersections). We also observed oriented crystalline regions within such ultrafine filaments after annealing at 55 °C. The scaffolds were printed upon NCO-sP(EO-stat-PO)-coated glass slide surfaces and withstood frequent liquid exchanges with negligible scaffold detachment for at least 10 days in vitro.
The development and formulation of printable inks for extrusion-based 3D bioprinting has been a major challenge in the field of biofabrication. Inks, often polymer solutions with the addition of crosslinking to form hydrogels, must not only display adequate mechanical properties for the chosen application but also show high biocompatibility as well as printability. Here we describe a reproducible two-step method for the assessment of the printability of inks for bioprinting, focussing firstly on screening ink formulations to assess fibre formation and the ability to form 3D constructs before presenting a method for the rheological evaluation of inks to characterise the yield point, shear thinning and recovery behaviour. In conjunction, a mathematical model was formulated to provide a theoretical understanding of the pressure-driven, shear thinning extrusion of inks through needles in a bioprinter. The assessment methods were trialled with a commercially available crème, poloxamer 407, alginate-based inks and an alginate-gelatine composite material. Yield stress was investigated by applying a stress ramp to a number of inks, which demonstrated the necessity of high yield for printable materials. The shear thinning behaviour of the inks was then characterised by quantifying the degree of shear thinning and using the mathematical model to predict the window of printer operating parameters in which the materials could be printed. Furthermore, the model predicted high shear conditions and high residence times for cells at the walls of the needle and effects on cytocompatibility at different printing conditions. Finally, the ability of the materials to recover to their original viscosity after extrusion was examined using rotational recovery rheological measurements. Taken together, these assessment techniques revealed significant insights into the requirements for printable inks and shear conditions present during the extrusion process and allow the rapid and reproducible characterisation of a wide variety of inks for bioprinting.
In this study, well-defined, 3D arrays of air-suspended melt electrowritten fibers are made from medical grade poly(ɛ-caprolactone) (PCL). Low processing temperatures, lower voltages, lower ambient temperature, increased collector distance, and high collector speeds all aid to direct-write suspended fibers that can span gaps of several millimeters between support structures. Such processing parameters are quantitatively determined using a “wedge-design” melt electrowritten test frame to identify the conditions that increase the suspension probability of long-distance fibers. All the measured parameters impact the probability that a fiber is suspended over multimillimeter distances. The height of the suspended fibers can be controlled by a concurrently fabricated fiber wall and the 3D suspended PCL fiber arrays investigated with early post-natal mouse dorsal root ganglion explants. The resulting Schwann cell and neurite outgrowth extends substantial distances by 21 d, following the orientation of the suspended fibers and the supporting walls, often generating circular whorls of high density Schwann cells between the suspended fibers. This research provides a design perspective and the fundamental parametric basis for suspending individual melt electrowritten fibers into a form that facilitates cell culture.
To facilitate true regeneration, a vascular graft should direct the evolution of a neovessel to obtain the function of a native vessel. For this, scaffolds have to permit the formation of an intraluminal endothelial cell monolayer, mimicking the tunica intima. In addition, when attempting to mimic a tunica media‐like outer layer, the stacking and orientation of vascular smooth muscle cells (vSMCs) should be recapitulated. An integral scaffold design that facilitates this has so far remained a challenge. A hybrid fabrication approach is introduced by combining solution electrospinning and melt electrowriting. This allows a tissue‐structure mimetic, hierarchically bilayered tubular scaffold, comprising an inner layer of randomly oriented dense fiber mesh and an outer layer of microfibers with controlled orientation. The scaffold supports the organization of a continuous luminal endothelial monolayer and oriented layers of vSM‐like cells in the media, thus facilitating control over specific and tissue‐mimetic cellular differentiation and support of the phenotypic morphology in the respective layers. Neither soluble factors nor a surface bioactivation of the scaffold is needed with this approach, demonstrating that heterotypic scaffold design can direct physiological tissue‐like cell organization and differentiation.
Biofabrication is an advancing new research field that might, one day, lead to complex products like tissue replacements or tissue analogues for drug testing. Although great progress was made during the last years, there are still major hurdles like new types of materials and advanced processing techniques. The main focus of this thesis was to help overcoming this hurdles by challenging and improving existing fabrication processes like extrusion-based bioprinting but also by developing new techniques. Furthermore, this thesis assisted in designing and processing materials from novel building blocks like recombinant spider silk proteins or inks loaded with charged nanoparticles.
A novel 3D printing technique called Melt Electrospinning Writing (MEW) was used in Chapter 3 to create tubular constructs from thin polymer fibers (roughly 12 μm in diameter) by collecting the fibers onto rotating and translating cylinders. The main focus was put on the influence of the collector diameter and its rotation and translation on the morphology of the constructs generated by this approach. In a first step, the collector was not moving and the pattern generated by these settings was analyzed. It could be shown that the diameter of the stationary collectors had a big impact on the morphology of the constructs. The bigger the diameter of the mandrel (smallest collector diameters 0.5 mm, biggest 4.8 mm) got, the more the shape of the generated footprint converged into a circular one known from flat collectors. In a second set of experiments the mandrels were only rotated. Increasing the rotational velocity from 4.2 to 42.0 rpm transformed the morphology of the constructs from a figure-of-eight pattern to a sinusoidal and ultimately to a straight fiber morphology. It was possible to prove that the transformation of the pattern was comparable to what was known from increasing the speed using flat collectors and that at a critical speed, the so called critical translation speed, straight fibers would appear that were precisely stacking on top of each other. By combining rotation and translation of the mandrel, it was possible to print tubular constructs with defined winding angles. Using collections speeds close to the critical translation speed enabled higher control of fiber positioning and it was possible to generate precisely stacked constructs with winding angles between 5 and 60°.
In Chapter 4 a different approach was followed. It was based on extrusion-based bioprinting in combination with a hydrogel ink system. The ink was loaded with nanoparticles and the nanoparticle release was analyzed. In other words, two systems, a printable polyglycidol/hyaluronic acid ink and mesoporous silica nanoparticles (MSN), were combined to analyze charge driven release mechanism that could be fine-tuned using bioprinting. Thorough rheological evaluations proved that the charged nanoparticles, both negatively charged MSN-COOH and positively charged MSN-NH2, did not alter the shear thinning properties of the ink that revealed a negative base charge due to hyaluronic acid as one of its main components. Furthermore, it could be shown that the particles did also not have a negative effect on the recovery properties of the material after exposure to high shear. During printing, the observations made via rheological testing were supported by the fact that all materials could be printed at the same settings of the bioprinter. Using theses inks, it was possible to make constructs as big as 12x12x3 mm3 composed of 16 layers. The fiber diameters produced were about 627±31 μm and two-component constructs could be realized utilizing the two hydrogel print heads of the printer to fabricate one hybrid construct. The particle distribution within those constructs was homogeneous, both from a microscopic and a macroscopic point of view. Particle release from printed constructs was tracked over 6 weeks and revealed that the print geometry had an influence on the particle release. Printed in a geometry with direct contact between the strands containing different MSN, the positively charged particles quickly migrated into the strand previously containing only negatively charged MSN-COOH. The MSN-COOH seemed to be rather released into the surrounding liquid and also after 6 weeks no MSN-COOH signal could be detected in the strand previously only containing MSN-NH2. In case of a geometry without direct contact between the strands, the migration of the positively charged nanoparticles into the MSN-COOH containing strand was strongly delayed. This proved that the architecture of the printed construct can be used to fine-tune the particle release from nanoparticle containing printable hydrogel ink systems.
Chapter 5 discusses an approach using hydrogel inks based on recombinant spider silk proteins processed via extrusion-based bioprinting. The ink could be applied for printing at protein concentrations of 3 % w/v without the addition of thickeners or any post process crosslinking. Both, the recombinant protein eADF4(C16) and a modification introducing a RGD-sequence to the protein (eADF4(C16)-RGD), could be printed revealing a very good print fidelity. The RGD modification had positive effect on the adhesion of cells seeded onto printed constructs. Furthermore, human fibroblasts encapsulated in the ink at concentrations of 1.2 million cells per mL did not alter the print fidelity and did not interfere with the crosslinking mechanism of the ink. This enabled printing cell laden constructs with a cell survival rate of 70.1±7.6 %. Although the cell survival rate needs to be improved in further trials, the approach shown is one of the first leading towards the shift of the window of biofabrication because it is based on a new material that does not need potentially harmful post-process crosslinking and allows the direct encapsulation of cells staying viable throughout the print process.
This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL and 1.93 g/mL were characterized regarding their rheological properties. Here, ageing over the course of 24 h showed an increase in viscosity and extrusion force, which was attributed to structural changes in HPMC as well as the formation of magnesium hydroxide by hydration of MgO. The pastes enabled printing of porous scaffolds with good dimensional stability and enabled a setting reaction to struvite when immersed in ammonium phosphate solution. Mechanical performance under compression was approx. 8–20 MPa as a monolithic structure and 1.6–3.0 MPa for printed macroporous scaffolds, depending on parameters such as powder to liquid ratio, ageing time, strand thickness and distance.