Refine
Has Fulltext
- yes (14)
Is part of the Bibliography
- yes (14)
Year of publication
Document Type
Language
- English (14)
Keywords
- 53BP1 (1)
- CML (1)
- Cardiovascular risk factors (1)
- Cardiovascular risk prediction (1)
- Carotid intima-media thickness (CIMT) (1)
- Carotid segment (1)
- Carotid ultrasound (1)
- Chirurgie (1)
- DNA damage (1)
- DNA methylferase homolog (1)
Institute
- Institut für Klinische Epidemiologie und Biometrie (3)
- Medizinische Klinik und Poliklinik I (3)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (1)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Frauenklinik und Poliklinik (1)
- Institut für Geographie und Geologie (1)
- Institut für Molekulare Infektionsbiologie (1)
- Institut für Pharmakologie und Toxikologie (1)
EU-Project number / Contract (GA) number
- 018696 (1)
Insulin receptors were solubilized from rat liver microsomes by the nonionic detergent Triton X-100. After gel filtration of the extract on Sepharose CL-6B, two insulin-binding species (peak I and peak li) were obtained. The structure and binding properties of both peaks were characterized. Gel filtration yielded Stokes radii of 9.2 nm (peak I) and 8.0 nm (peak Il). Both peaks were glycoproteins. At 4°C peak 1 showed optimal insulin binding at pH 8.0 and high ionic strength. In contrast, peak li bad its binding optimum at pH 7.0 and low ionic strength, where peak I bindingwas minimal. For peak I the change in insulin binding under different conditions of pH and ionic strength was due to a change in receptor affinity only. For peak 11 an additional change in receptor number was found. Both peaks yielded non-linear Scatchard plots under most of the buffer conditions examined. At their binding optima at 4 oc the high affinity dissociation constants were 0.50 nM (peak I) and 0.55 nM (peak II). Sodium dodecyl sulfatejpolyacrylamide gel electrophoresis of peak I revealed five receptor bands with Mr 400000, 365000, 320000, 290000, and 245000 under non-reducing conditions. For peak II two major receptor bands with M\(_r\) 210000 and 115000 were found. The peak II receptor bands were also obtained aftermild reduction of peak I. After complete reduction both peaks showed one major receptor band with M\(_r\) 130000. The reductive generation of the peak II receptor together with molecular mass estimations suggest that the peak I receptor is the disulfide-linked dimer of the peak II receptor. Thus, Triton extracts from rat liver microsomes contain two receptor species, which are related, but differ considerably in their size and insulin-binding properties.
Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in \(tRNA^{Asp(GUC)}\) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified \(tRNA^{Glu(CUC/UUC)}\) and \(tRNA^{Gly(GCC)}\) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.
The ability to perform mathematical tasks is required in everyday life. Although heritability estimates suggest a genetic contribution, no previous study has conclusively identified a genetic risk variant for mathematical performance. Research has shown that the prevalence of mathematical disabilities is increased in children with dyslexia. We therefore correlated genome-wide data of 200 German children with spelling disability, with available quantitative data on mathematic ability. Replication of the top findings in additional dyslexia samples revealed that rs133885 was a genome-wide significant marker for mathematical abilities\((P_{comb}=7.71 x 10^{-10}, n=699)\), with an effect size of 4.87%. This association was also found in a sample from the general population (P=0.048, n=1080), albeit with a lower effect size. The identified variant encodes an amino-acid substitution in MYO18B, a protein with as yet unknown functions in the brain. As areas of the parietal cortex, in particular the intraparietal sulcus (IPS), are involved in numerical processing in humans, we investigated whether rs133885 was associated with IPS morphology using structural magnetic resonance imaging data from 79 neuropsychiatrically healthy adults. Carriers of the MYO18B risk-genotype displayed a significantly lower depth of the right IPS. This validates the identified association between rs133885 and mathematical disability at the level of a specific intermediate phenotype.
Background
The spectrum of indications for the use of membranes and scaffolds in the field of oral and maxillofacial surgery includes, amongst others, guided bone regeneration (GBR). Currently available membrane systems face certain disadvantages such as difficult clinical handling, inconsistent degradation, undirected cell growth and a lack of stability that often complicate their application. Therefore, new membranes which can overcome these issues are of great interest in this field.
Methods
In this pilot study, we investigated polycaprolactone (PCL) scaffolds intended to enhance oral wound healing by means of melt electrospinning writing (MEW), which allowed for three-dimensional (3D) printing of micron scale fibers and very exact fiber placement. A singular set of box-shaped scaffolds of different sizes consisting of medical-grade PCL was examined and the scaffolds’ morphology was evaluated via scanning electron microscopy (SEM). Each prototype sample with box sizes of 225 μm, 300 μm, 375 μm, 450 μm and 500 μm was assessed for cytotoxicity and cell growth by seeding each scaffold with human osteoblast-like cell line MG63.
Results
All scaffolds demonstrated good cytocompatibility according to cell viability, protein concentration, and cell number. SEM analysis revealed an exact fiber placement of the MEW scaffolds and the growth of viable MG63 cells on them. For the examined box-shaped scaffolds with pore sizes between 225 μm and 500 μm, a preferred box size for initial osteoblast attachment could not be found.
Conclusions
These well-defined 3D scaffolds consisting of medical-grade materials optimized for cell attachment and cell growth hold the key to a promising new approach in GBR in oral and maxillofacial surgery.
Background
The guideline recommendation to not measure carotid intima-media thickness (CIMT) for cardiovascular risk prediction is based on the assessment of just one single carotid segment. We evaluated whether there is a segment-specific association between different measurement locations of CIMT and cardiovascular risk factors.
Methods
Subjects from the population-based STAAB cohort study comprising subjects aged 30 to 79 years of the general population from Würzburg, Germany, were investigated. CIMT was measured on the far wall of both sides in three different predefined locations: common carotid artery (CCA), bulb, and internal carotid artery (ICA). Diabetes, dyslipidemia, hypertension, smoking, and obesity were considered as risk factors. In multivariable logistic regression analysis, odds ratios of risk factors per location were estimated for the endpoint of individual age- and sex-adjusted 75th percentile of CIMT.
Results
2492 subjects were included in the analysis. Segment-specific CIMT was highest in the bulb, followed by CCA, and lowest in the ICA. Dyslipidemia, hypertension, and smoking were associated with CIMT, but not diabetes and obesity. We observed no relevant segment-specific association between the three different locations and risk factors, except for a possible interaction between smoking and ICA.
Conclusions
As no segment-specific association between cardiovascular risk factors and CIMT became evident, one simple measurement of one location may suffice to assess the cardiovascular risk of an individual.
Purpose
One therapy option for prostate cancer patients with bone metastases is the use of [\(^{223}\)Ra]RaCl\(_{2}\). The α-emitter \(^{223}\)Ra creates DNA damage tracks along α-particle trajectories (α-tracks) in exposed cells that can be revealed by immunofluorescent staining of γ-H2AX+53BP1 DNA double-strand break markers. We investigated the time- and absorbed dose-dependency of the number of α-tracks in peripheral blood mononuclear cells (PBMCs) of patients undergoing their first therapy with [\(^{223}\)Ra]RaCl\(_{2}\).
Methods
Multiple blood samples from nine prostate cancer patients were collected before and after administration of [\(^{223}\)Ra]RaCl\(_{2}\), up to 4 weeks after treatment. γ-H2AX- and 53BP1-positive α-tracks were microscopically quantified in isolated and immuno-stained PBMCs.
Results
The absorbed doses to the blood were less than 6 mGy up to 4 h after administration and maximally 16 mGy in total. Up to 4 h after administration, the α-track frequency was significantly increased relative to baseline and correlated with the absorbed dose to the blood in the dose range < 3 mGy. In most of the late samples (24 h - 4 weeks after administration), the α-track frequency remained elevated.
Conclusion
The γ-H2AX+53BP1 assay is a potent method for detection of α-particle-induced DNA damages during treatment with or after accidental incorporation of radionuclides even at low absorbed doses. It may serve as a biomarker discriminating α- from β-emitters based on damage geometry.