Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (5)
- Doctoral Thesis (1)
Keywords
- platelets (2)
- Barthel-Index (1)
- ERK signaling cascade (1)
- Myokardiale Energetik (1)
- Sauerstoffverbrauch (1)
- Tumor Nekrose Faktor-Alpha (1)
- Vasodilatator-stimuliertes Phosphoprotein (1)
- Vasodilator-Stimulated Phosphoprotein (1)
- Zytokine (1)
- cAMP / cGMP / cytoskeleton / phosphorylation / protein kinase (1)
Vasoactive agents which elevate either cGMP or cAMP inhibit platelet activation by pathways sharing at least one component, the 46/50 kDa vasodilator-stimulated phosphoprotein (V ASP). V ASP is stoichiometrically phosphorylated by both cGMP-dependent and cAMPdependent protein kinases in intact human platelets, and its phosphorylation correlates very well with platelet inhibition caused by cGMP- and cAMP-elevating agents. Here we report that in human platelets spread on glass, V ASP is associated predominantly with the distal parts of radial micro filament bundles and with microfilaments outlining the periphery, whereas less V ASP is associated with a central microfilamentous ring. V ASP is also detectable in a variety of different cell types including fibroblasts and epithelial cells. In fibroblasts, V ASP is concentrated at focal contact areas, along microfilament bundles (stress fibres) in a punctate pattern, in the periphery of protruding lamellae, and is phosphorylated by cGMP- and cAMP-dependent protein kinases in response to appropriate stimuli. Evidence for the direct binding of V ASP to F -actin is also presented. The data demonstrate that V ASP is a novel phosphoprotein associated with actin filaments and focal contact areas, i.e. transmembrane junctions between microfilaments and the extracellular matrix.
Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan’s Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.
Background: Early medical complications are potentially modifiable factors influencing in-hospital outcome. We investigated the influence of acute complications on mortality and poor outcome 3 months after ischemic stroke.
Methods: Data were obtained from patients admitted to one of 13 stroke units of the Berlin Stroke Registry (BSR) who participated in a 3-months-follow up between June 2010 and September 2012. We examined the influence of the cumulative number of early in-hospital complications on mortality and poor outcome (death, disability or institutionalization) 3 months after stroke using multivariable logistic regression analyses and calculated attributable fractions to determine the impact of early complications on mortality and poor outcome.
Results: A total of 2349 ischemic stroke patients alive at discharge from acute care were included in the analysis. Older age, stroke severity, pre-stroke dependency and early complications were independent predictors of mortality 3 months after stroke. Poor outcome was independently associated with older age, stroke severity, pre-stroke dependency, previous stroke and early complications. More than 60% of deaths and poor outcomes were attributed to age, pre-stroke dependency and stroke severity and in-hospital complications contributed to 12.3% of deaths and 9.1% of poor outcomes 3 months after stroke.
Conclusion: The majority of deaths and poor outcomes after stroke were attributed to non-modifiable factors. However, early in-hospital complications significantly affect outcome in patients who survived the acute phase after stroke, underlining the need to improve prevention and treatment of complications in hospital.
von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways.
Es konnte erstmals gezeigt werden, dass Tumor Nekrose Faktor-α (TNF- α) (TNF-α) in pathophysiologisch relevanten Konzentrationen neben seiner bekannten negativ inotropen Wirkung einen deutlichen Effekt auf die myokardiale Energetik im Myokard der Ratte besitzt. Dieser wurde anhand des Sauerstoffverbrauchs an rechtsventrikulären Muskelstreifenpräparaten quantifiziert. Der erhöhte Energieumsatz bei gleichzeitig reduzierter myokardialer Arbeit, d.h. der gesteigerte spezifische Sauerstoffverbrauch, basiert auf einer verschlechterten Ökonomie des Kontraktionsprozesses. Diese schnelle Wirkung auf die myokardiale Energetik ist durch einen Sphingolipid Signaltransduktionsweg vermittelt. Dagegen spielt wohl für den mechanischen Effekt von TNF-α sowohl NO, als auch Sphingosin eine Rolle.
Background
Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets.
Methods
To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASPS239) by flow cytometry and Western blot. ANOVA followed by Bonferroni’s test and Student’s t-test were used as appropriate.
Results
We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite.
Conclusions
All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC.