Refine
Has Fulltext
- yes (28)
Is part of the Bibliography
- yes (28)
Year of publication
Document Type
- Journal article (28)
Language
- English (28)
Keywords
- S-ADAPT (2)
- allometric scaling (2)
- body composition (2)
- body size (2)
- chemistry (2)
- cystic fibrosis patients (2)
- healthy volunteers (2)
- leishmaniasis (2)
- population pharmacokinetics (2)
- protein binding (2)
Institute
- Institut für Pharmazie und Lebensmittelchemie (26)
- Institut für Molekulare Infektionsbiologie (4)
- Botanischer Garten (1)
- Institut für Anorganische Chemie (1)
- Institut für Organische Chemie (1)
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (1)
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen (1)
- Medizinische Klinik und Poliklinik II (1)
- Neurochirurgische Klinik und Poliklinik (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)
Background
Even though the international combat against Neglected Tropical Diseases such as schistosomiasis or soil-transmitted helminthiases depends on reliable therapeutics, anthelminthic pharmacovigilance has been neglected on many national African drug markets. Therefore, quality and composition of Albendazole, Mebendazole and Praziquantel locally collected in Burkina Faso, Côte d’Ivoire, Ghana and Tanzania were analysed.
Methods
Samples of 88 different batches were obtained from randomly selected facilities. Sampling took place in Northwest Tanzania, Western Burkina Faso, Southeast Côte d’Ivoire and Southwest Ghana. Visual examination of both packaging and samples was performed according to the WHO ‘Be Aware’ tool. Products were then screened with the GPHF Minilab, consisting of tests of mass uniformity, disintegration times and thin-layer chromatography (TLC). Confirmatory tests were performed according to international pharmacopoeiae, applying assays for dissolution profiles and high-performance liquid chromatography (HPLC).
Findings
Despite minor irregularities, appearance of the products did not hint at falsified medicines. However, 19.6% of the brands collected in Ghana and Tanzania were not officially licensed for sale. Mass uniformity was confirmed in 53 out of 58 brands of tablets. 41 out of 56 products passed disintegration times; 10 out of the 15 failing products did not disintegrate at all. Evaluating TLC results, only 4 out of 83 batches narrowly missed specification limits, 18 batches slightly exceeded them. Not more than 46.3% (31 / 67) of the tablets assayed passed the respective pharmaceutical criteria for dissolution. HPLC findings confirmed TLC results despite shifted specification limits: 10 out of 83 tested batches contained less than 90%, none exceeded 110%.
Conclusion
In the four study countries, no falsified anthelminthic medicine was encountered. The active pharmaceutical ingredient was not found to either exceed or fall below specification limits. Galenic characteristics however, especially dissolution profiles, revealed great deficits.
The charged aerosol detector (CAD) is the latest representative of aerosol-based detectors that generate a response independent of the analytes' chemical structure. This study was aimed at accurately predicting the CAD response of homologous fatty acids under varying experimental conditions. Fatty acids from C12 to C18 were used as model substances due to semivolatile characterics that caused non-uniform CAD behaviour. Considering both experimental conditions and molecular descriptors, a mixed quantitative structure-property relationship (QSPR) modeling was performed using Gradient Boosted Trees (GBT). The ensemble of 10 decisions trees (learning rate set at 0.55, the maximal depth set at 5, and the sample rate set at 1.0) was able to explain approximately 99% (Q\(^2\): 0.987, RMSE: 0.051) of the observed variance in CAD responses. Validation using an external test compound confirmed the high predictive ability of the model established (R-2: 0.990, RMSEP: 0.050). With respect to the intrinsic attribute selection strategy, GBT used almost all independent variables during model building. Finally, it attributed the highest importance to the power function value, the flow rate of the mobile phase, evaporation temperature, the content of the organic solvent in the mobile phase and the molecular descriptors such as molecular weight (MW), Radial Distribution Function-080/weighted by mass (RDF080m) and average coefficient of the last eigenvector from distance/detour matrix (Ve2_D/Dt). The identification of the factors most relevant to the CAD responsiveness has contributed to a better understanding of the underlying mechanisms of signal generation. An increased CAD response that was obtained for acetone as organic modifier demonstrated its potential to replace the more expensive and environmentally harmful acetonitrile.
Most drugs are no longer produced in their own countries by the pharmaceutical companies, but by contract manufacturers or at manufacturing sites in countries that can produce more cheaply. This not only makes it difficult to trace them back but also leaves room for criminal organizations to fake them unnoticed. For these reasons, it is becoming increasingly difficult to determine the exact origin of drugs. The goal of this work was to investigate how exactly this is possible by using different spectroscopic methods like nuclear magnetic resonance and near- and mid-infrared spectroscopy in combination with multivariate data analysis. As an example, 56 out of 64 different paracetamol preparations, collected from 19 countries around the world, were chosen to investigate whether it is possible to determine the pharmaceutical company, manufacturing site, or country of origin. By means of suitable pre-processing of the spectra and the different information contained in each method, principal component analysis was able to evaluate manufacturing relationships between individual companies and to differentiate between production sites or formulations. Linear discriminant analysis showed different results depending on the spectral method and purpose. For all spectroscopic methods, it was found that the classification of the preparations to their manufacturer achieves better results than the classification to their pharmaceutical company. The best results were obtained with nuclear magnetic resonance and near-infrared data, with 94.6%/99.6% and 98.7/100% of the spectra of the preparations correctly assigned to their pharmaceutical company or manufacturer.
Background
Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts.
Methods
Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts’ solutions in 10% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants.
Results
Inhibition of bacterial growth at MIC of 256–1024 μg/mL was observed in only 15.4% of identical plant species. These values were 4–16-fold higher than those reported earlier. Further, 18.2% of related plant species had MICs of 128–256 μg/mL. Besides, 29.2% and 95.8% of the extracts were soluble to sparingly soluble in 10% DMSO and acetone, respectively. Extracts’ solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65% and 95% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30% of the articles, whereas 40% of them used unidentified bacterial isolates.
Conclusion
Reproducibility of previously reported activities from plants’ extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.
The GABA\(_{B}\) receptor agonist baclofen is a medication commonly used for the treatment of muscle spasticity. It is an amino acid and related to the neurotransmitter GABA. In this study, we developed a new, gradient high-performance liquid chromatography (HPLC) method for the impurity assessment of baclofen, which is appropriate for pharmacopoeial purposes. Since the impurities related to the synthesis pathway are acids, zwitterionic, or neutral, the method development is challenging. However, the separation of all components was achieved on a C18 stationary phase using a water–acetonitrile–trifluoroacetic acid gradient. A limit of detection (LOD) of at least 0.02% was registered for all specified impurities. Additionally, CAD detection was performed to detect potential impurities lacking off a chromophore. The baclofen batches analyzed are far more pure than expected. All impurities were found below the specification limit, and thus, they can be regarded as unspecified. Moreover, the required runtime could be significantly reduced compared to the current USP or Ph. Eur. method.
Investigation of isomerization of dexibuprofen in a ball mill using chiral capillary electrophoresis
(2021)
Besides the racemate, the S‐enantiomer of ibuprofen (Ibu) is used for the treatment of inflammation and pain. Since the configurational stability of S‐Ibu in solid state is of interest, it was studied by means of ball milling experiments. For the evaluation of the enantiomeric composition, a chiral CE method was developed and validated according to the ICH guideline Q2(R1). The addition of Mg\(^{2+}\), Ca\(^{2+}\), or Zn\(^{2+}\) ions to the background electrolyte (BGE) was found to improve Ibu enantioresolution. Chiral separation of Ibu enantiomers was achieved on a 60.2 cm (50.0 cm effective length) x 75 μm fused‐silica capillary using a background electrolyte (BGE) composed of 50 mM sodium acetate, 10 mM magnesium acetate tetrahydrate, and 35 mM heptakis‐(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (TM‐β‐CD) as chiral selector. The quantification of R‐Ibu in the mixture was performed using the normalization procedure. Linearity was evaluated in the range of 0.68–5.49% R‐Ibu (R\(^{2}\) = 0.999), recovery was found to range between 97 and 103%, the RSD of intra‐ and interday precision below 2.5%, and the limit of quantification for R‐ in S‐Ibu was calculated to be 0.21% (extrapolated) and 0.15% (dilution of racemic ibuprofen), respectively. Isomerization of S‐Ibu was observed under basic conditions by applying long milling times and high milling frequencies.
Microbial, mammalian, and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, for example, with carboxylic acids or mineral acids, is a natural blueprint to maintain basic metabolites in solution. Here, we aim at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with the basic natural product papaverine resulting in enhanced aqueous solubility. The obtained PILs were characterized by H-1-N-15 HMBC nuclear magnetic resonance (NMR) and in the solid state using X-ray powder diffraction, differential scanning calorimetry, and dissolution measurements. Furthermore, their supramolecular pattern in aqueous solution was studied by means of potentiometric and photometrical solubility, NMR aggregation assay, dynamic light scattering, zeta potential, and viscosity measurements. Thereby, we identified the naturally occurring carboxylic acids, citric acid, malic acid, and tartaric acid, as being appropriate counterions for papaverine and which will facilitate the formation of PILs with their beneficial characteristics, like the improved dissolution rate and enhanced apparent solubility.
The muscarinic M\(_1\) acetylcholine receptor is an important drug target for the treatment of various neurological disorders. Designing M\(_1\) receptor-selective drugs has proven challenging, mainly due to the high conservation of the acetylcholine binding site among muscarinic receptor subtypes. Therefore, less conserved and topographically distinct allosteric binding sites have been explored to increase M\(_1\) receptor selectivity. In this line, bitopic ligands, which target orthosteric and allosteric binding sites simultaneously, may provide a promising strategy. Here, we explore the allosteric, M1-selective BQCAd scaffold derived from BQCA as a starting point for the design, synthesis, and pharmacological evaluation of a series of novel bitopic ligands in which the orthosteric moieties and linker lengths are systematically varied. Since β-arrestin recruitment seems to be favorable to therapeutic implication, all the compounds were investigated by G protein and β-arrestin assays. Some bitopic ligands are partial to full agonists for G protein activation, some activate β-arrestin recruitment, and the degree of β-arrestin recruitment varies according to the respective modification. The allosteric BQCAd scaffold controls the positioning of the orthosteric ammonium group of all ligands, suggesting that this interaction is essential for stimulating G protein activation. However, β-arrestin recruitment is not affected. The novel set of bitopic ligands may constitute a toolbox to study the requirements of β-arrestin recruitment during ligand design for therapeutic usage.
Plant extracts from Cecropia genus have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous reports have shown that roots of Cecropia telenitida that contains serjanic acid as one of the most prominent and representative pentacyclic triterpenes. The study aimed to isolate serjanic acid and evaluate its effect in a prediabetic murine model by oral administration. A semi-pilot scale extraction was established and serjanic acid purification was followed using direct MALDI-TOF analysis. A diet induced obesity mouse model was used to determine the impact of serjanic acid over selected immunometabolic markers. Mice treated with serjanic acid showed decreased levels of cholesterol and triacylglycerols, increased blood insulin levels, decreased fasting blood glucose and improved glucose tolerance, and insulin sensitivity. At transcriptional level, the reduction of inflammation markers related to adipocyte differentiation is reported.
Quinolone antibiotics present an attractive oral treatment option in patients with cystic fibrosis (CF). Prior studies have reported comparable clearances and volumes of distribution in patients with CF and healthy volunteers for primarily renally cleared quinolones. We aimed to provide the first pharmacokinetic comparison for pefloxacin as a predominantly nonrenally cleared quinolone and its two metabolites between both subject groups. Eight patients with CF (fat-free mass [FFM]: 36.3 ± 6.9 kg, average ± SD) and ten healthy volunteers (FFM: 51.7 ± 9.9 kg) received 400 mg pefloxacin as a 30 min intravenous infusion and orally in a randomized, two-way crossover study. All plasma and urine data were simultaneously modelled. Bioavailability was complete in both subject groups. Pefloxacin excretion into urine was approximately 74% higher in patients with CF compared to that in healthy volunteers, whereas the urinary excretion of metabolites was only slightly higher in patients with CF. After accounting for body size and composition via allometric scaling by FFM, pharmacokinetic parameter estimates in patients with CF divided by those in healthy volunteers were 0.912 for total clearance, 0.861 for nonrenal clearance, 1.53 for renal clearance, and 0.916 for volume of distribution. Nonrenal clearance accounted for approximately 90% of total pefloxacin clearance. Overall, bioavailability and disposition were comparable between both subject groups.