Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (2)
Language
- English (2)
Keywords
- Joubert syndrome (1)
- Voronoi tree map (1)
- aminocoumarins (1)
- arlR (1)
- congenital ocular motor apraxia (1)
- gyrase (1)
- microarray (1)
- molar tooth sign (1)
- novobiocin (1)
- spacer (1)
Institute
Altering gene expression by aminocoumarins: the role of DNA supercoiling in Staphylococcus aureus
(2014)
BACKGROUND:
It has been shown previously that aminocoumarin antibiotics such as novobiocin lead to immediate downregulation of recA expression and thereby inhibit the SOS response, mutation frequency and recombination capacity in Staphylococcus aureus. Aminocoumarins function by inhibiting the ATPase activity of DNA gyrase subunit B with a severe impact on DNA supercoiling.
RESULTS:
Here, we have analysed the global impact of the DNA relaxing agent novobiocin on gene expression in S. aureus. Using a novobiocin-resistant mutant, it became evident that the change in recA expression is due to gyrase inhibition. Microarray analysis and northern blot hybridisation revealed that the expression levels of a distinct set of genes were increased (e.g., recF-gyrB-gyrA, the rib operon and the ure operon) or decreased (e.g., arlRS, recA, lukA, hlgC and fnbA) by novobiocin. The two-component ArlRS system was previously found to decrease the level of supercoiling in S. aureus. Thus, downregulation of arlRS might partially compensate for the relaxing effect of novobiocin. Global analysis and gene mapping of supercoiling-sensitive genes did not provide any indication that they are clustered in the genome. Promoter fusion assays confirmed that the responsiveness of a given gene is intrinsic to the promoter region but independent of the chromosomal location.
CONCLUSIONS:
The results indicate that the molecular properties of a given promoter, rather than the chromosomal topology, dictate the responsiveness to changes in supercoiling in the pathogen Staphylococcus aureus.
Nosological delineation of congenital ocular motor apraxia type Cogan: an observational study
(2016)
Background
The nosological assignment of congenital ocular motor apraxia type Cogan (COMA) is still controversial. While regarded as a distinct entity by some authorities including the Online Mendelian Inheritance in Man catalog of genetic disorders, others consider COMA merely a clinical symptom.
Methods
We performed a retrospective multicenter data collection study with re-evaluation of clinical and neuroimaging data of 21 previously unreported patients (8 female, 13 male, ages ranging from 2 to 24 years) diagnosed as having COMA.
Results
Ocular motor apraxia (OMA) was recognized during the first year of life and confined to horizontal pursuit in all patients. OMA attenuated over the years in most cases, regressed completely in two siblings, and persisted unimproved in one individual. Accompanying clinical features included early onset ataxia in most patients and cognitive impairment with learning disability (n = 6) or intellectual disability (n = 4). Re-evaluation of MRI data sets revealed a hitherto unrecognized molar tooth sign diagnostic for Joubert syndrome in 11 patients, neuroimaging features of Poretti-Boltshauser syndrome in one case and cerebral malformation suspicious of a tubulinopathy in another subject. In the remainder, MRI showed vermian hypo-/dysplasia in 4 and no abnormalities in another 4 patients. There was a strong trend to more severe cognitive impairment in patients with Joubert syndrome compared to those with inconclusive MRI, but otherwise no significant difference in clinical phenotypes between these two groups.
Conclusions
Systematical renewed analysis of neuroimaging data resulted in a diagnostic reappraisal in the majority of patients with early-onset OMA in the cohort reported here. This finding poses a further challenge to the notion of COMA constituting a separate entity and underlines the need for an expert assessment of neuroimaging in children with COMA, especially if they show cognitive impairment.