Refine
Has Fulltext
- yes (11)
Is part of the Bibliography
- yes (11)
Document Type
- Journal article (11)
Language
- English (11)
Keywords
- tinnitus (5)
- ecological momentary assessment (4)
- mHealth (3)
- machine learning (3)
- mobile health (3)
- crowdsensing (2)
- acupressure (1)
- architectural design (1)
- cbt (1)
- chronic disorders (1)
Institute
- Institut für Klinische Epidemiologie und Biometrie (10)
- Institut für Hygiene und Mikrobiologie (1)
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (1)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Medizinische Klinik und Poliklinik I (1)
Tinnitus is an auditory phantom perception in the absence of an external sound stimulation. People with tinnitus often report severe constraints in their daily life. Interestingly, indications exist on gender differences between women and men both in the symptom profile as well as in the response to specific tinnitus treatments. In this paper, data of the TrackYourTinnitus platform (TYT) were analyzed to investigate whether the gender of users can be predicted. In general, the TYT mobile Health crowdsensing platform was developed to demystify the daily and momentary variations of tinnitus symptoms over time. The goal of the presented investigation is a better understanding of gender-related differences in the symptom profiles of users from TYT. Based on two questionnaires of TYT, four machine learning based classifiers were trained and analyzed. With respect to the provided daily answers, the gender of TYT users can be predicted with an accuracy of 81.7%. In this context, worries, difficulties in concentration, and irritability towards the family are the three most important characteristics for predicting the gender. Note that in contrast to existing studies on TYT, daily answers to the worst symptom question were firstly investigated in more detail. It was found that results of this question significantly contribute to the prediction of the gender of TYT users. Overall, our findings indicate gender-related differences in tinnitus and tinnitus-related symptoms. Based on evidence that gender impacts the development of tinnitus, the gathered insights can be considered relevant and justify further investigations in this direction.
Background: Tinnitus is often described as the phantom perception of a sound and is experienced by 5.1% to 42.7% of the population worldwide, at least once during their lifetime. The symptoms often reduce the patient's quality of life. The TrackYourTinnitus (TYT) mobile health (mHealth) crowdsensing platform was developed for two operating systems (OS)-Android and iOS-to help patients demystify the daily moment-to-moment variations of their tinnitus symptoms. In all platforms developed for more than one OS, it is important to investigate whether the crowdsensed data predicts the OS that was used in order to understand the degree to which the OS is a confounder that is necessary to consider.
Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.
Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case.
The increasing prevalence of smart mobile devices (e.g., smartphones) enables the combined use of mobile crowdsensing (MCS) and ecological momentary assessments (EMA) in the healthcare domain. By correlating qualitative longitudinal and ecologically valid EMA assessment data sets with sensor measurements in mobile apps, new valuable insights about patients (e.g., humans who suffer from chronic diseases) can be gained. However, there are numerous conceptual, architectural and technical, as well as legal challenges when implementing a respective software solution. Therefore, the work at hand (1) identifies these challenges, (2) derives respective recommendations, and (3) proposes a reference architecture for a MCS-EMA-platform addressing the defined recommendations. The required insights to propose the reference architecture were gained in several large-scale mHealth crowdsensing studies running for many years and different healthcare questions. To mention only two examples, we are running crowdsensing studies on questions for the tinnitus chronic disorder or psychological stress. We consider the proposed reference architecture and the identified challenges and recommendations as a contribution in two respects. First, they enable other researchers to align our practical studies with a baseline setting that can satisfy the variously revealed insights. Second, they are a proper basis to better compare data that was gathered using MCS and EMA. In addition, the combined use of MCS and EMA increasingly requires suitable architectures and associated digital solutions for the healthcare domain.
To deal with drawbacks of paper-based data collection procedures, the QuestionSys approach empowers researchers with none or little programming knowledge to flexibly configure mobile data collection applications on demand. The mobile application approach of QuestionSys mainly pursues the goal to mitigate existing drawbacks of paper-based collection procedures in mHealth scenarios. Importantly, researchers shall be enabled to gather data in an efficient way. To evaluate the applicability of QuestionSys, several studies have been carried out to measure the efforts when using the framework in practice. In this work, the results of a study that investigated psychological insights on the required mental effort to configure the mobile applications are presented. Specifically, the mental effort for creating data collection instruments is validated in a study with N=80 participants across two sessions. Thereby, participants were categorized into novices and experts based on prior knowledge on process modeling, which is a fundamental pillar of the developed approach. Each participant modeled 10 instruments during the course of the study, while concurrently several performance measures are assessed (e.g., time needed or errors). The results of these measures are then compared to the self-reported mental effort with respect to the tasks that had to be modeled. On one hand, the obtained results reveal a strong correlation between mental effort and performance measures. On the other, the self-reported mental effort decreased significantly over the course of the study, and therefore had a positive impact on measured performance metrics. Altogether, this study indicates that novices with no prior knowledge gain enough experience over the short amount of time to successfully model data collection instruments on their own. Therefore, QuestionSys is a helpful instrument to properly deal with large-scale data collection scenarios like clinical trials.
The effect of non-personalised tips on the continued use of self-monitoring mHealth applications
(2020)
Chronic tinnitus, the perception of a phantom sound in the absence of corresponding stimulus, is a condition known to affect patients' quality of life. Recent advances in mHealth have enabled patients to maintain a ‘disease journal’ of ecologically-valid momentary assessments, improving patients' own awareness of their disease while also providing clinicians valuable data for research. In this study, we investigate the effect of non-personalised tips on patients' perception of tinnitus, and on their continued use of the application. The data collected from the study involved three groups of patients that used the app for 16 weeks. Groups A & Y were exposed to feedback from the start of the study, while group B only received tips for the second half of the study. Groups A and Y were run by different supervisors and also differed in the number of hospital visits during the study. Users of Group A and B underwent assessment at baseline, mid-study, post-study and follow-up, while users of group Y were only assessed at baseline and post-study. It is seen that the users in group B use the app for longer, and also more often during the day. The answers of the users to the Ecological Momentary Assessments are seen to form clusters where the degree to which the tinnitus distress depends on tinnitus loudness varies. Additionally, cluster-level models were able to predict new unseen data with better accuracy than a single global model. This strengthens the argument that the discovered clusters really do reflect underlying patterns in disease expression.
Tinnitus is a phantom sound perception in the ears or head and can arise from many different medical disorders. Currently, there is no standard treatment for tinnitus that reliably reduces tinnitus. Individual patients reported that acupressure at various points around the ear can help to reduce tinnitus, which was investigated here. With this longitudinal observational study, we report a systematic evaluation of auricular acupressure on 39 tinnitus sufferers, combined with a self-help smartphone app. The participants were asked to report on tinnitus, stress, mood, neck, and jaw muscle tensions twice a day using an ecological momentary assessment study design for six weeks. On average, 123.6 questionnaires per person were provided and used for statistical analysis. The treatment responses of the participants were heterogeneous. On average, we observed significant negative trends for tinnitus loudness (Cohen's d effect size: −0.861), tinnitus distress (d = −0.478), stress (d = −0.675), and tensions in the neck muscles (d = −0.356). Comparison with a matched control group revealed significant improvements for tinnitus loudness (p = 0.027) and self-reported stress level (p = 0.003). The positive results of the observational study motivate further research including a randomized clinical trial and long-term assessment of the clinical improvement.
Tinnitus is a complex and heterogeneous psycho-physiological disorder responsible for causing a phantom ringing or buzzing sound albeit the absence of an external sound source. It has a direct influence on affecting the quality of life of its sufferers. Despite being around for a while, there has not been a cure for tinnitus, and the usual course of action for its treatment involves use of tinnitus retaining and sound therapy, or Cognitive Behavioral Therapy (CBT). One positive aspect about these therapies is that they can be administered face-to-face as well as delivered via internet or smartphone. Smartphones are especially helpful as they are highly personalized devices, and offer a well-established ecosystem of apps, accessible via respective marketplaces of differing mobile platforms. Note that current therapeutic treatments such as CBT have shown to be effective in suppressing the tinnitus symptoms when administered face-to-face, their effectiveness when being delivered using smartphones is not known so far. A quick search on the prominent market places of popular mobile platforms (Android and iOS) yielded roughly 250 smartphone apps offering tinnitus-related therapies and tinnitus management. As this number is expected to steadily increase due to high interest in smartphone app development, a contemporary review of such apps is crucial. In this paper, we aim to review scientific studies validating the smartphone apps, particularly to test their effectiveness in tinnitus management and treatment. We use the PRISMA guidelines for identification of studies on major scientific literature sources and delineate the outcomes of identified studies.
Prediction of tinnitus perception based on daily life mHealth data using country origin and season
(2022)
Tinnitus is an auditory phantom perception without external sound stimuli. This chronic perception can severely affect quality of life. Because tinnitus symptoms are highly heterogeneous, multimodal data analyses are increasingly used to gain new insights. MHealth data sources, with their particular focus on country- and season-specific differences, can provide a promising avenue for new insights. Therefore, we examined data from the TrackYourTinnitus (TYT) mHealth platform to create symptom profiles of TYT users. We used gradient boosting engines to classify momentary tinnitus and regress tinnitus loudness, using country of origin and season as features. At the daily assessment level, tinnitus loudness can be regressed with a mean absolute error rate of 7.9% points. In turn, momentary tinnitus can be classified with an F1 score of 93.79%. Both results indicate differences in the tinnitus of TYT users with respect to season and country of origin. The significance of the features was evaluated using statistical and explainable machine learning methods. It was further shown that tinnitus varies with temperature in certain countries. The results presented show that season and country of origin appear to be valuable features when combined with longitudinal mHealth data at the level of daily assessment.