Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (1)
- Doctoral Thesis (1)
Language
- English (2)
Keywords
- blood nerve barrier (1)
- claudin-12 (1)
- claudin-5 (1)
- dorsal root ganglion (1)
- myelin barrier (1)
- nerve injury (1)
- neuropathic pain (1)
- neuropathy (1)
- tight junction (1)
The nervous system is shielded by special barriers. Nerve injury results in blood–nerve barrier breakdown with downregulation of certain tight junction proteins accompanying the painful neuropathic phenotype. The dorsal root ganglion (DRG) consists of a neuron-rich region (NRR, somata of somatosensory and nociceptive neurons) and a fibre-rich region (FRR), and their putative epi-/perineurium (EPN). Here, we analysed blood–DRG barrier (BDB) properties in these physiologically distinct regions in Wistar rats after chronic constriction injury (CCI). Cldn5, Cldn12, and Tjp1 (rats) mRNA were downregulated 1 week after traumatic nerve injury. Claudin-1 immunoreactivity (IR) found in the EPN, claudin-19-IR in the FRR, and ZO-1-IR in FRR-EPN were unaltered after CCI. However, laser-assisted, vessel specific qPCR, and IR studies confirmed a significant loss of claudin-5 in the NRR. The NRR was three-times more permeable compared to the FRR for high and low molecular weight markers. NRR permeability was not further increased 1-week after CCI, but significantly more CD68\(^+\) macrophages had migrated into the NRR. In summary, NRR and FRR are different in naïve rats. Short-term traumatic nerve injury leaves the already highly permeable BDB in the NRR unaltered for small and large molecules. Claudin-5 is downregulated in the NRR. This could facilitate macrophage invasion, and thereby neuronal sensitisation and hyperalgesia. Targeting the stabilisation of claudin-5 in microvessels and the BDB barrier could be a future approach for neuropathic pain therapy.
In peripheral nervous system (PNS), the blood-nerve barrier (BNB) and myelin barrier (MB) are important physiological fences for maintaining the environment for axons, Schwann cells and other associated cells within peripheral nerves. The perineurium surrounding the nerves and endoneurial vessels nourishing the nerves compose the BNB. Schwann cells wrapping around neurons form the MB. Destruction or malfunction of the barriers has been postulated as an initial step in the development of pathologic conditions concerning human peripheral nerves, such as traumatic neuropathy and the disease of chronic inflammatory demyelination polyneuropathy (CIDP).
Tight junction proteins (TJPs) are intercellular junctions building the microstructure of barriers. They play a key role in tightly connecting adjacent cells, controlling the passage of ions, water and other molecules via the paracellular pathway, and maintaining the cell polarity. Among the family of TJPs, claudins are the major structural components which form the backbone of TJs. Certain key TJPs [e.g. claudins (claudin-1, -5, -19, occludin, zona occludens (ZO-1)] have been identified in neural barriers and explored for therapeutic targets. The expression of Cldn12 gene has been documented in human/rodent tibial nerves, spinal cord and DRG. However, the role of claudin-12 in PNS is unknown.
In the present study, we firstly found a loss of claudin-12 immunoreactivity (IR) in male or postmenopausal female patients with painful CIDP or non-inflammatory polyneuropathy (PNP). Then, we utilized male and female Cldn12-KO mice and the chronic constriction injury (CCI) model. Cldn12 mRNA and IR were reduced in WT mice after nerve injury. Deletion of Cldn12 via general knockout (KO) induced mechanical allodynia at baseline level and after CCI in time-dependent manner in male mice. KO of Cldn12 in males resulted in loss of small axons, perineurial barrier and MB breakdown, as well as TJP complex disruption with claudin-1, -19 and Pmp22 reduction. Moreover, local Cldn12 siRNA application mimicked mechanical allodynia and MB breakdown.
In conclusion, claudin-12 deficiency is associated with painful CIDP/non-inflammatory PNP. Claudin-12 is a regulatory TJP crucial for mechanical nociception, perineurial barrier and MB integrity, and proper TJP composition in mice. Therefore, further investigating the functions of claudin-12 and its mechanism is important to prompt the development of new therapeutic approaches for painful neuropathies.