Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Doctoral Thesis (4)
Keywords
- Vaccinia-Virus (3)
- Krebs <Medizin> (2)
- Onkolyse (2)
- Astrozyten (1)
- Glioblastom (1)
- MRT (1)
- MSOT (1)
- Melanin (1)
- Metastase (1)
- Mikroglia (1)
Sonstige beteiligte Institutionen
Die gängigen therapeutischen Behandlungsmethoden für die verschiedensten Krebserkrankungen zeigen nach wie vor Mängel bezüglich der Effizienz sowie zahlreiche Nebenwirkungen während und nach der Behandlung. Maßgeblich für diese Defizite ist die teilweise geringe Sensitivität der meisten konventionellen diagnostischen Systeme und damit einhergehend die oftmals zu späte Identifikation entarteter Gewebsbereiche. Zur Lösung dieser Problematik bieten onkolytische Vaccinia-Viren einen Ansatz, sowohl die Effizienz der Therapie wie auch die Diagnostik zu verbessern. In beiden Fällen sind die Tumorzell-spezifische Vermehrung der Viren und die Möglichkeit entscheidend, die Viren als Vektorsystem zur Expression therapeutischer oder diagnostischer Fremdgenkassetten zu nutzen.
Um ein auf Vaccinia-Virus-basierendes Reportersystem zum diagnostischen Nachweis von Krebszellen mittels Tiefengewebs-Tomographie bereit zu stellen, wurden die für die murine Tyrosinase (mTyr) und das Tyrosinase-Helferprotein 1 (Tyrp1) kodierenden Gene in das Genom eines onkolytischen Vaccinia-Virus inseriert. Die Tyrosinase ist das Schlüsselenzym der Melaninsynthese. Bereits die solitäre Expression der Tyrosinase führt in der transformierten Zelle zur Melaninproduktion. Das Tyrosinase-Helferprotein 1 ist an der Prozessierung und Stabilisierung der Tyrosinase beteiligt. Bereits in verschiedenen Studien konnte gezeigt werden, dass Melanin als Reportermolekül für die Magnetresonanz sowie für die multispektrale optoakustische Tomographie einsetzbar ist. Es wurde deswegen angestrebt, die Kombination aus dem therapeutischen Potential des onkolytischen Vaccinia-Virus und der diagnostischen Anwendung des Melanins als Reporter auszunutzen. Sämtliche in dieser Arbeit aufgeführten rekombinanten Vaccinia-Viren (rVACV) wurden von der Firma Genelux Corporation zur Verfügung gestellt und in dieser Arbeit hinsichtlich der therapeutischen Effizienz und des diagnostischen Potentials untersucht. In ersten Zellkultur-Versuchen wurde anhand verschiedener konstitutiv melanogener rVACV-Konstrukte festgestellt, dass die Kombination aus dem Vaccinia-Virus-spezifischen synthetic early/late Promotor und dem Enzym Tyrosinase (GLV-1h327) bzw. den Enzymen Tyrosinase und Tyrosinase-Helferprotein 1 (GLV-1h324) die höchste Melaninsynthese-Rate zeigte. Anschließend wurde mittels der Bestimmung der spektralen Absorption und der Enzymaktivität der viral kodierten Melanin synthetisierenden Enzyme sowie mikroskopischer Analysen gezeigt, dass es mit diesen auf
8
Vaccinia-Virus-basierenden melanogenen Reportersystemen möglich ist, die Melaninsynthese in nicht-melanogenen Zellen zu induzieren.
Anhand elektronenmikroskopischer Untersuchungen in Zellkultur und ex vivo konnte gezeigt werden, dass die nach rVACV-Infektion stattfindende Melaninsynthese in den Lysosomen der Wirtszelle abläuft. Eine Analyse der atomaren Zusammensetzung des viral vermittelten Melanins ergab, dass es sich um eine Mischform aus Eu- und Phäomelanin handelt. Dieser Melanin-Mix ähnelte dem Melanin aus Haut und Augen, jedoch lagen an Melanin-gebundene Metallionen in erhöhtem Maß vor...
Cancer is one of the leading causes of death. 90% of all deaths are caused by the effects of metastases. It is of major importance to successfully treat the primary tumor and metastases. Tumors and metastases often differ in their properties and therefore, treatment is not always successful. In contrast, those therapeutic agents can even promote formation and growth of metastases. Hence, it is indispensable to find treatment options for metastatic disease. One promising candidate represents the oncolytic virus therapy with vaccinia viruses.
The aim of this work was to analyze two cell lines regarding their metastatic abilities and to investigate whether oncolytic vaccinia viruses are useful therapy options. The cell lines used were the human cervical cancer cell line C33A implanted into immune-compromised mice and the murine melanoma cell line B16F10, implanted into immune-competent mice.
The initial point of the investigations was the observation of enlarged lumbar und renal lymph nodes in C33A tumor-bearing mice 35 days post implantation of C33A cells subcutaneously into immune-compromised nude mice. Subsequently, the presence of human cells in enlarged lymph nodes was demonstrated by RT-PCR. To facilitate the monitoring of cancer cell spreading, the gene encoding for RFP was inserted into the genome of C33A cells. In cell culture experiments, it was possible to demonstrate that this insertion did not negatively affect the susceptibility of the cells to virus infection, replication and virus-mediated cell lysis. The analysis of the metastatic process in a xenografted mouse model revealed the continuous progression of lumbar (LN) and renal (RN) lymph node metastasis after C33A-RFP tumor cell implantation. The lymph node volume and the amount of RFP-positive LNs and RNs was increasing from week to week in accordance with the gain of the primary tumor volume. Moreover, the metastatic spread of cancer cells in lymph vessels between lumbar and renal lymph nodes was visualized. Additionally, the haematogenous way of cancer cell migration was demonstrated by RFP positive cancer cells in blood vessels. The haematogenous route of spreading was confirmed by detecting micrometastases in lungs of tumor bearing mice.
The next step was to investigate whether the recombinant oncolytic vaccinia virus GLV-1h68 is a suitable candidate to cure the primary tumor and metastases. Therefore, GLV-1h68 was systemically injected into C33A-RFP tumor bearing mice 21 days after tumor cell implantation. It was demonstrated that the volume of the primary tumor was drastically reduced, and the volume and the amount of RFP positive lumbar and renal lymph nodes were significantly decreasing compared to the untreated control group. Subsequently, this process was analyzed further by investigating the colonization pattern in the C33A-RFP model. It was shown that first the primary tumor was colonized with highest detectable virus levels, followed by LN and RN lymph nodes. Histological analyses revealed the proliferative status of tumor cells in the tumor and lymph nodes, the amount of different immune cell populations and the vascular permeability in primary tumors and lymph nodes having an influence on the colonization pattern of the virus. Whereby, the vascular permeability seems to have a crucial impact on the preferential colonization of tumors compared to lymph node metastases in this tumor model.
C33A turned out to be a useful model to study the formation and therapy of metastases. However, a metastatic model in which the influence of the immune system on tumors and especially on tumor therapy can be analyzed would be preferable. Therefore, the aim of the second part was to establish a syngeneic metastatic mouse model.
Accordingly, the murine melanoma cell line B16F10 was analyzed in immunocompetent mice. First, the highly attenuated GLV 1h68 virus was compared to its parental strain LIVP 1.1.1 concerning infection, replication and cell lysis efficacy in cell culture. LIVP 1.1.1 was more efficient than GLV-1h68 and was subsequently used for following mouse studies. Comparative studies were performed, comparing two different implantation sites of the tumor cells, subcutaneously and footpad, and two different mouse strains, FoxN1 nude and C57BL/6 mice. Implantation into the footpad led to a higher metastatic burden in lymph nodes compared to the subcutaneous implantation site. Finally, the model of choice was the implantation of B16F10 into the footpad of immune-competent C57BL/6 mice. Furthermore, it was inevitable to deliver the virus as efficient as possible to the tumor and metastases. Comparison of two different injection routes, intravenously and intratumorally, revealed, that the optimal injection route was intratumorally. In summary, the murine B16F10 model is a promising model to study the effects of the immune system on vaccinia virus mediated therapy of primary tumors and metastases.
Glioblastoma multiforme (GBM) is one of the most frequent and malignant forms of brain cancer in adults. The prognosis is poor with a median survival time of 12-15 months. There is a broad range of alternative treatment options studied in preclinical and clinical trials for GBM. One alternative treatment option is oncolytic virotherapy, defined as the use of replication‐competent viruses that selectively infect and destroy cancer cells while leaving, non‐transformed cells unharmed. Vaccinia virus (VACV) is one favorable candidate. Although oncolytic viruses can kill tumor cells grown in vitro with high efficiency, they often exhibit reduced replication capacity in vivo suggesting that physiological aspects of the tumor microenvironment decrease the virus’ therapeutic potential. The percentage and composition of immune cells varies between cancer types and patients and is investigated as a biomarker in several studies. Making oncolytic virotherapy successful for GBM, it is necessary to understand the individual tumor biology, the interaction with the microenvironment and immune system.
It was demonstrated that the attenuated VACV wild-type (wt) isolate LIVP 1.1.1 replicate and lyse the murine GL261 glioma cell line in vitro. In the following, the replication efficacy was characterized in a comparative approach in vivo. Immunocompetent C57BL/6 (wt) mice and immunodeficient mouse strains of different genetic background C57BL/6 athymic and Balb/c athymic mice were used. In addition, subcutaneous and intracranial locations were compared. The results revealed viral replication exclusively in Balb/c athymic mice with subcutaneous tumors but in none of the other models.
In the following, the tumor microenvironment of the subcutaneous tumor models at the time of infection was performed. The study showed that implantation of the same tumor cells in different mouse strains resulted in a different tumor microenvironment with a distinct composition of immune cells. Highest differences were detected between immunodeficient and immunocompetent mice. The study showed major differences in the expression of MHCII with strongest expression in C57BL/6 wt and weakest in Balb/c athymic tumors. In the following, the influence of the phenotypic change associated with the upregulation of MHCII on GL261 tumor cells on viral replication was analyzed. Comparison of C57BL/6 wt and C57BL/6 IFN-γ knockout mice revealed endogenous IFN-γ levels to upregulate MHCII on GL261 tumor cells and to reduce viral replication in C57BL/6 wt mice. Analysis of single cell suspensions of tumor homogenates of C57BL/6 and Balb/c athymic mice showed that the IFN-γ-mediated anti-tumor effect was a reversible effect. Furthermore, reasons for inhibition of virus replication in orthotopic glioma models were elucidated. By immunohistochemical analysis it was shown that intratumoral amounts of Iba1+ microglia and GFAP+ astrocytes in Gl261 gliomas was independent from intratumoral VACV injection. Based on these findings virus infection in glioma, microglia and astrocytes was compared and analyzed in cell culture. In contrast to the GL261 glioma cells, replication was barely detectable in BV-2 microglia and IMA2.1 astrocytic cells. Co-culture experiments revealed that microglia compete for virus uptake in cell culture. It was further shown that BV-2 cells showed apoptotic characteristics after VACV infection while GL261 cells showed signs of necrotic cell death. Additionally, in BV-2 cells with M1-phenotype a further reduction of viral replication and inhibition of cell lysis was detected. Infection of IMA 2.1 cells was independent of the M1/M2-phenotype. Application of BV-2 microglia with M1-phenotype onto organotypic slice cultures with implanted GL261 tumors resulted in reduced infection of BV-2 cells with LIVP 1.1.1, whereas GL261 cells were significantly infected.
Taken together, the analyzed GL261 tumors were imprinted by the immunologic and genetic background in which they grow. The experimental approach applied in this thesis can be used as suitable model which reflects the principles of personalized medicine
In an additional project, based on gene expression data and bioinformatic analyses, the biological role and function of the anti-apoptotic factor AVEN was analyzed with regard to oncolytic VACV therapy. Besides a comparison of the replication efficacy of GLV-1h68 and VACV-mediated cell killing of four human tumor cell lines, it was shown that AVEN was expressed in all analyzed cells. Further, shown for HT-29 and 1936-MEL, the knockdown of AVEN by siRNA in cell culture resulted in an increase of apoptotic characteristics and a decrease of VACV infection. These findings provide essential insights for future virus development.
Oncolytic viral therapies have shown great promise pre-clinically and in human clinical trials for the treatment of various cancers. Oncolytic viruses selectively infect and replicate in cancer cells, destroying tumor tissue via cell lysis, while leaving noncancerous tissues unharmed. Vaccinia virus (VACV) is arguably one of the safest viruses, which has been intensively studied in molecular biology and pathogenesis as a vaccine for the eradication of smallpox in more than 200 million people. It has fast and efficient replication, and cytoplasmic replication of the virus lessens the chance of recombination or integration of viral DNA into the genome of host cells. Anti-tumor therapeutic efficacy of VACV has been demonstrated for human cancers in xenograft models with a variety of tumor types. In addition recombinant oncolytic VACVs carrying imaging genes represent an advance in treatment strategy that combines tumor-specific therapeutics as well as diagnostics.
As for other targeted therapies, a number of challenges remain for the clinical translation of oncolytic virotherapy. These challenges include the potential safety risk of replication of oncolytic virus in non-tumor tissue, the relatively poor virus spread throughout solid tumor tissue and the disadvantageous ratio between anti-viral and anti-tumoral immunity. However, manipulation of components of the tumor microenvironment may help oncolytic virus infection in killing the tumor tissue and thereby increasing the anti-tumor efficacy. Furthermore, dogs with natural cancer are considered as one of the best animal models to develop new drugs for cancer therapy. Traditionally, rodent cancer models have been used for development of cancer therapeutics. However, they do not adequately represent several features that define cancer in humans, including biology of initiation of tumor, the complexity of cancer recurrence and metastasis and outcomes to novel therapies. However, the tumor microenvironment, histopathology, molecular and genomics data from dog tumors has significant similarities with corresponding human tumors. These advantages of pet dog cancers provide a unique opportunity to integrate canine cancer patients in the studies designed for the development of new cancer drugs targeted against both human and canine cancers. This dissertation centers on the use of VACV strains in canine cancer xenografts with the aim of understanding the effects of modulation of tumor microenvironment on VACV-mediated tumor therapy.
In the first studies, wild-type VACV strain LIVP6.1.1 was tested for its oncolytic efficiency in canine soft tissue sarcoma (STSA-1) and canine prostate carcinoma (DT08/40) cells in culture and xenografts models. LIVP6.1.1 infected, replicated within, and killed both STSA-1 and DT08/40 cells in cell culture. The replication of virus was more efficient in STSA-1 cells compared to DT08/40 cells. In xenograft mouse models, LIVP6.1.1 was safe and effective in regressing both STSA-1 and DT08/40 xenografts. However, tumor regression was faster in STSA-1 xenografts compared to DT08/40 xenografts presumably due to more efficient replication of virus in STSA-1 cells. Biodistribution profiles revealed persistence of virus in tumors 5 and 7 weeks post virus injection in STSA-1 and DT08/40 xenografts, respectively, with the virus mainly cleared from all other major organs. Immunofluorescence staining detected successful colonization of VACV in the tumor. Consequently, LIVP6.1.1 colonization in the tumor showed infiltration of innate immune cells mainly granulocytes and macrophages in STSA-1 tumor xenografts. These findings suggest that virotherapy-mediated anti-tumor mechanism in xenografts could be a combination of direct viral oncolysis of tumor cells and virus-dependent infiltration of tumor-associated host immune cells.
In further studies, the effects of modulation of tumor angiogenesis of VACV therapy were analyzed in canine cancer xenografts. GLV-1h109 VACV strain (derived from prototype virus GLV-1h68) encoding the anti-VEGF single chain antibody GLAF-1 was characterized for its oncolytic efficacy in STSA-1 and DT08/40 cancer cells in culture and tumor xenografts. Concomitantly, the effects of locally expressed GLAF- 1 in tumors on virus replication, host immune infiltration, tumor vascularization and tumor growth were also evaluated.
GLV-1h109 was shown to be similar to the parental virus GLV-1h68 in expression of the two marker genes that both virus strains have in common (Ruc-GFP and gusA) in cell cultures. Additionally, the anti-VEGF single-chain antibody GLAF-1 was expressed by GLV-1h109 in both cell cultures and tumor xenografts. The insertion of GLAF-1 did not significantly affect the replication and cytotoxicity of GLV-1h109 in the STSA-1 and DT08/40 cell lines, although at early time points (24-48 hpi), the replication of GLV-1h109 was higher in STSA-1 cells compared to DT08/40 cells. In addition, STSA-1 cells were more susceptible to lysis with GLV-1h109 than DT08/40 cells. GLV-1h109 achieved a significant inhibition of tumor growth in both STSA-1 and DT08/40 canine xenografts models. Consequently, the significant regression of tumor growth was initiated earlier in STSA-1 tumor xenografts compared to regression in DT08/40 xenografts. The reason for the higher efficacy of GLV-1h109 in STSA-1 xenografts than DT08/40 xenografts was attributed to more efficient replication of virus in STSA-1 cells. In addition, tumor-specific virus infection led to a continued presence of GLAF-1 in peripheral blood, which could be useful as a pharmacokinetic marker to monitor virus colonization and persistence in GLV-1h109- injected xenograft mice. GLAF-1 is a single-chain antibody targeting human and murine VEGF. It was demonstrated that GLAF-1 was functional and recognized both canine and human VEGF with equal efficiency.
Histological analysis of tumor sections 7 days after GLV-1h109 injection confirmed that colonization of VACV and intratumoral expression of GLAF-1 translated into a significant decrease in blood vessel number compared to GLV-1h68 or PBS-treated control tumors. Subsequently, reduction in blood vessel density significantly improved the spread and replication of VACV as observed by FACS analysis and standard plaque assay, respectively. Inhibition of tumor angiogenesis and increased replication of virus further improved the infiltration of innate immune cells mainly granulocytes and macrophages in STSA-1 tumor xenografts. Both the results, i.e. improved virus spread and increased infiltration of innate immune cells in tumor, were explained by a phenomenon called “vascular normalization”, where anti-VEGF therapy normalizes the heterogeneous tumor vasculature thereby improving delivery and spread of VACV. In summary, the effects of inhibition of tumor angiogenesis on virus spread and replication were demonstrated using a vaccinia virus caring an anti- angiogenic payload targeting vascular endothelial growth factor (VEGF) in canine cancer xenografts.
In the final studies, the effects of VACV therapy on modulation of the immune system were analyzed in canine cancer patients enrolled in a phase I clinical trial. V-VET1 (clinical grade LIVP6.1.1 VACV) injection significantly increased the percentages of CD3+CD8+ T lymphocytes at 21 days after initiation of treatment. CD3+CD8+ T lymphocytes are mainly cytotoxic T lymphocytes that have potential to lyse cancer cells. Subsequently, the frequency of immune suppressor cells, mainly MDSCs and Treg was also analyzed in peripheral blood of canine cancer patients. Increase in the MDSC population and decreased CD8/Treg ratio is known to have inhibitory effects on the functions of cytotoxic T cells. We demonstrated that injection of V-VET1 in canine cancer patients significantly reduced the percentages of MDSCs at 21 days post initiation of treatment. Additionally, CD8/Treg ratio was increased 21 days after initiation of V-VET1 treatment. We also showed that changes in the frequency of immune cells neither depends on dose of virus nor depends on tumor type according to the data observed from this clinical trial with eleven analyzed patients.
This preclinical and clinical data have important clinical implications of how VACV therapy can be used for the treatment of canine cancers. Moreover, dogs with natural cancers can be used as an ideal animal model to improve the oncolytic virotherapy for human cancers. Furthermore, modulation of tumor microenvironment mainly tumor angiogenesis and tumor immunity has significant impact on the success of oncolytic virotherapy.