Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Keywords
Institute
The aim of this work was the selective functionalisation of tribenzotriquinacene (TBTQ) in order to extend the aromatic system and tune the electronic properties. The synthesised molecules could be starting materials for a model system of a defective graphene fragment. The “triple cyclisation pathway” by Hopf et al. was adapted and fluorinated tribenzotriquinacenes were synthesised for the first time.
Phenanthrene groups were also introduced in other model systems and the crystal structures of phenanthrene functionalised TBTQs were compared with the parent molecules.
In addition, the arrangement of TBTQ and centro methyl functionalised TBTQ was investigated on a Ag(111) surface for the first time using scanning transmission microscopy (STM). Different arrangements were observed, depending on the coverage of the surface.
The insights gained about the interaction between TBTQs as well as their synthesis provide a foundation for further work and potential applications as components in organic electronic devices.
Tribenzotriquinacene (TBTQ) is a polycyclic aromatic framework with a particularly rigid, C3v symmetrical, bowl-shaped core bearing three mutually fused indane wings. It has been discussed as a defect center for a nanographene by Kuck and colleagues. Therefore, extended TBTQ structures are promising models for saturated defect structures in graphene and graphene like molecules and could be used to investigate the role of defects for the electronic properties of graphene. With this motivation, three different pi-extended TBTQ derivatives have been synthesized in this work. Several different Scholl reaction conditions were tried to obtain fully annulated product of hexaphenyl substituted TBTQ. The desired benzannulated TBTQ derivative could not be obtained due to unfavourable electron density in the respective positions of the molecule and increased reactivity of the bay position of the precursor. As an another method for benzannulation is the on-surface synthesis of graphene flakes and can be carried out using electron beams e.g. in a tunneling microscope (STM). According to our previous research, the parent system TBTQ and centro-methyl TBTQ on silver and gold surfaces showed that the gas phase deposition of these molecules gives rise to the formation of highly ordered two-dimensional assemblies with unique structural features. This shows the feasibility for the formation of defective graphene networks starting from the parent structures. Therefore, the same deposition technique was used to deposit Me-TBTQ(OAc)3Ph6, and investigate the molecular self-assembly properties directly on the surface of Cu (111). In summary, the substrate temperature dependent self-assembly of Me-TBTQ(OAc)3Ph6 molecules on Cu(111), shows the following evolution of orientations. At room temperature, molecules form dimers, which construct a higher-coverage honeycomb lattice. Furthermore, one of the acetyl group located in the bay positions of the TBTQ core is cleaved and the remaining two induce the metal-molecule interaction. It was presumed that by increasing the temperature to 393 K, the remaining acetyl and methyl groups would beeliminated from the molecular structure.In addition, the smaller TBTQ-Ph6 molecules preferably lie flat on Cu(111) crystal and allowing the molecules to settle into a C3-symmetry and form a dense hexagonal structure.
Nanodiamond (ND) is a versatile and promising material for bio-applications. Despite many efforts, agglomeration of nanodiamond and the non-specific adsorption of proteins on the ND surface when exposed to bio-fluids remains a major obstacle for biomedical applications. An assortment of branched and linear molecules with superior ability to colloidally stabilize nanoparticles in salt and cell media environment, for up to 30 days, was attached to the ND’s surface.
The building box system with azide as external groups offers a huge variety of binding with many molecules, such as drugs, dyes or targeting molecules, is possible. Clicking, for instance, zwitterions moieties to the chain protects ND surface from protein corona forming when the particles get in contact with biofluids containing proteins.
Thermogravimetric analysis results of the ND surface loading show a significant prevention of up to 98 % of the protein adsorption compared with NDs without zwitterionic headgroups and long colloidal stability when tetraethylene glycol (TEG) are attached to the surface.
The versatility of the modular system to bind not only zwitterionic chains but also clickable functional molecules to fluorescent nanodiamonds (fNDs) demonstrates the potential of the system at the nanodiamond. Using defect structures, such as nitrogen-vacancy (NV) centers, diamond particles, due to their widely non-toxic behavior, can be used as fNDs for photostable labeling, bioimaging and nanoscale sensing in living cells and organisms. To functionalize the fND surface a novel milling technique with diazonium salts was established to perform grafting on poorly reactive HPHT fNDs yielding in high surface loading and high negative zeta potential.
Combining the benefits of TEG and zwitterion containing groups with antibody enabled nucleus targeting ability on fND confirms the enhanced colloidal stability in living cells experiments for the first time. Furthermore, the results indicate an improved corona repulsion compared with fND without zwitterion containing headgroups. As a result, the circulation times were enlarged from 4 (fND without zwitterion chain but with antibody) to 17 (with antibody and zwitterion chains) hours.
In non-biomedical applications, the modular system can be used as a probe for heavy metals by binding it to dyes. Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited and known for fluorescence sensing in different media.
The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e.g. quenching effects by the excimer emission. This study shows a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups.
This probe can quantitatively detect Cu2+, Pb2+ and Hg2+ in organic solvents over a broad concentration range, even in the presence of ubiquitous ions such as Na+, K+, Ca2+ and Mg2+. The strongly emissive sensor’s fluorescence with a long lifetime of 165 ns is quenched by a 1:1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e.g. for the monitoring of the respective ions in waste streams.
Nonetheless, often these waste streams end up in sensitive aquacultures, where such sensor technology only works if the probe is water-soluble to monitor the spread and formation of environmental damage from heavy metals. Many chemosensors only work quantitatively in specific solvents and under highly pure conditions. In this thesis a method to stabilize water-insoluble chemosensors on nanodiamonds in saline water while maintaining the sensor efficacy and specificityas as well as colloidal stability is presented. Additionally, the sensor capability is retained in organic solvents. This study provides insight into the absorptivity of pyrene derivatives to the nanodiamond surface and a way to reversibly desorb them.
Moreover, the system proves that in presence of 95 % oxygen atmosphere while the fluoresce measurement the results of the do not vary from the one in argon atmosphere. Furthermore, the presence of common ions in water do not disturb the colloidal stability of the NDs and also no influence the sensor functionality and thus is highly promising candidate for measurement without cumbersome preparation steps.