Refine
Has Fulltext
- yes (22)
Is part of the Bibliography
- yes (22)
Year of publication
Document Type
- Doctoral Thesis (21)
- Master Thesis (1)
Keywords
- Quantenpunkt (5)
- Nanooptik (4)
- Plasmon (4)
- Nahfeldoptik (3)
- Nanostruktur (3)
- Optischer Resonator (3)
- ARPES (2)
- Antenne (2)
- Drei-Fünf-Halbleiter (2)
- Exziton-Polariton (2)
Institute
Sonstige beteiligte Institutionen
Laser spectroscopic gas sensing has been applied for decades for several applications
as atmospheric monitoring, industrial combustion gas analysis or fundamental research.
The availability of new laser sources in the mid-infrared opens the spectral fingerprint
range to the technology where multiple molecules possess their fundamental ro-vibrational
absorption features that allow very sensitive detection and accurate discrimination of
the species. The increasing maturity of quantum cascade lasers that cover this highly
interesting spectral range motivated this research to gain fundamental knowledge about
the spectra of hydrocarbon gases in pure composition and in complex mixtures as they
occur in the petro-chemical industry. The long-term target of developing accurate and fast
hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops,
would lead to a paradigm change in this industry.
This thesis aims to contribute to a higher accuracy and more comprehensive understanding
of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet
unavailable high resolution and high accuracy reference spectra of the respective gases,
the investigation of their spectral behavior in mixtures due to collisional broadening of
their transitions and the verification of the feasibility to quantitatively discriminate the
spectra when several overlapping species are simultaneously measured in gas mixtures.
To achieve this knowledge a new laboratory environment was planned and built up to
allow for the supply of the individual gases and their arbitrary mixing. The main element
was the development of a broadly tunable external-cavity quantum cascade laser based
spectrometer to record the required spectra. This also included the development of a new
measurement method to obtain highly resolved and nearly gap-less spectral coverage as
well as a sophisticated signal post-processing that was crucial to achieve the high accuracy
of the measurements. The spectroscopic setup was used for a thorough investigation of
the spectra of the first seven alkanes as of their mixtures. Measurements were realized
that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an
accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4
for long-time averaging of the acquired spectra.
These spectral measurements accomplish a quality that compares to state-of-the art
spectral databases and revealed so far undocumented details of several of the investigated
gases that have not been measured with this high resolution before at the chosen measurement
conditions. The results demonstrate the first laser spectroscopic discrimination of a
seven component gas mixture with absolute accuracies below 0.5 vol.% in the mid-infrared
provided that a sufficiently broad spectral range is covered in the measurements. Remaining
challenges for obtaining improved spectral models of the gases and limitations of the
measurement accuracy and technology are discussed.
The projects presented in this thesis cover the examination of the electronic and structural properties of organic thin films at noble metal-organic interfaces. Angle-resolved photoemission spectroscopy is used as the primary investigative tool due to the connection of the emitted photoelectrons to the electronic structure of the sample. The surveyed materials are of relevance for fundamental research and practical applications on their own, but also serve as archetypes for the photoemission techniques presented throughout the four main chapters of this thesis. The techniques are therefore outlined with their adaptation to other systems in mind and a special focus on the proper description of the final state.
The most basic description of the final state that is still adequate for the evaluation of photoemission data is a plane wave. Its simplicity enables a relatively intuitive interpretation of photoemission data, since the initial and final state are related to one another by a Fourier transform and a geometric factor in this approximation. Moreover, the initial states of some systems can be reconstructed in three dimensions by combining photoemission measurements at various excitation energies. This reconstruction can even be carried out solely based on experimental data by using suitable iterative algorithms.
Since the approximation of the final state in the photoemission process by a plane wave is not valid in all instances, knowledge on the limitations of its applicability is indispensable. This can be gained by a comparison to experimental data as well as calculations with a more detailed description of the photoemission final state. One possible appraoch is based on independently emitting atoms where the coherent superposition of partial, atomic final states produces the total final state. This approach can also be used for more intricate studies on organic thin films. To this end, experimental data can be related to theoretical calculations to gain extensive insights into the structural and electronic properties of molecules in organic thin films.
In this work, femtosecond laser pulses are used to launch optical excitations on different nanostructures. The excitations are confined below the diffraction limit and propagate along the nanostructures.
Fundamental properties of these ultrashort optical near fields are determined by characterizing the far-field emission after propagation with a setup developed for this task. Furthermore, control of the nanooptical excitations' spatial and temporal evolution is demonstrated for a designed nanostructure.
This thesis presents the detailed development of the fabrication process and the first observations of artificial magnetic atoms from the II-VI diluted magnetic semiconductor alloy (Zn,Cd,Be,Mn)Se. In order to manufacture the vertical quantum dot device which exhibits artificial atom behavior a number of development steps are conducted. First, the II-VI heterostructure is adjusted for the linear transport regime. Second, state of the art vertical quantum dot fabrication techniques in the III-V material system are investigated regarding their portability to the II-VI heterostructure. And third, new approaches to the fabrication process are developed, taking into account the complexity of the heterostructure and its physical properties. Finally a multi-step fabrication process is presented, which is built up from electron beam and optical lithography, dry and wet etching and insulator deposition. This process allows for the processing of pillars with diameters down to 200 nm with an insulating dielectric and gate. Preliminary transport data on the fabricated vertical quantum dots are presendted confirming the magnetic nature of the resulting artificial atoms.
Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials.
An experimental setup for probing ultrafast dynamics at the diffraction limit was developed, characterized and demonstrated in the scope of the thesis, aiming for optical investigations while simultaneously approaching the physical limits on the length and timescale.
An overview of this experimental setup was given in Chapter 2, as well as the considerations that led to the selection of the individual components. Broadband laser pulses with a length of 9.3 fs, close to the transform limit of 7.6 fs, were focused in a NA = 1.4 immersion oil objective, to the diffraction limit of below 300 nm (FWHM).
The spatial focus shape was characterized with off-resonance gold nanorod scatterers scanned through the focal volume. For further insights into the functionality and limitations of the pulse shaper, its calibration procedure was reviewed. The deviations between designed and experimental pulse shapes were attributed to pulse-shaper artifacts, including voltage-dependent inter-layer as well as intra-layer LCD-pixel crosstalk, Fabry-Pérot-type reflections in the LCD layers, and space-time coupling. A pixel-dependent correction was experimentally carried out, which can be seen as an extension of the initial calibration to all possible voltage combinations of the two LCD layers.
The capabilities of the experimental setup were demonstrated in two types of experiments, targeting the nonlinearity of gold (Chapter 3) as well as two-dimensional spectroscopy at micro-structured surfaces (Chapter 4).
Investigating thin films, an upper bound for the absolute value for the imaginary part of the nonlinear refractive index of gold could be set to |n′′ 2 (Au)| < 0.6·10−16 m2/W, together with |n′ 2 (Au)| < 1.2·10−16 m2/W as an upper bound for the absolute value of the real part. Finite-difference time-domain simulations on y-shaped gold nanostructures indicated that a phase change of ∆Φ ≥ 0.07 rad between two plasmonic modes would induce a sufficient change in the spatial contrast of emission to the far-field to be visible in the experiment. As the latter could not be observed, this value of ∆Φ was determined as the upper bound for the experimentally induced phase change. An upper bound of 52 GW/cm2 was found for the damage threshold.
In Chapter 4, a novel method for nonlinear spectroscopy on surfaces was presented. Termed coherent two-dimensional fluorescence micro-spectroscopy, it is capable of exploring ultrafast dynamics in nanostructures and molecular systems at the diffraction limit. Two-dimensional spectra of spatially isolated hotspots in structured thin films of fluorinated zinc phthalocyanine (F16ZnPc) dye were taken with a 27-step phase-cycling scheme. Observed artifacts in the 2D maps were identified as a consequence from deviations between the desired and the experimental pulse shapes. The optimization procedures described in Chapter 2 successfully suppressed the deviations to a level where the separation from the nonlinear sample response was feasible.
The experimental setup and methods developed and presented in the scope of this thesis demonstrate its flexibility and capability to study microscopic systems on surfaces. The systems exemplarily shown are consisting of metal-organic dyes and metallic nanostructures, represent samples currently under research in the growing fields of organic semiconductors and plasmonics.
Nano-antennas are an emerging concept for the manipulation and control of optical fields at the sub-wavelength scale. In analogy to their radio- and micro-wave counterparts they provide an efficient link between propagating and localized fields. Antennas operating at optical frequencies are typically on the order of a few hundred nanometer in size and are fabricated from noble metals. Upon excitation with an external field the electron gas inside the antenna can respond resonantly, if the dimensions of the antenna are chosen appropriate. Consequently, the resonance wavelength depends on the antenna dimensions. The electron-density oscillation is a hybrid state of electron and photon and is called a localized plasmon resonance. The oscillating currents within the antenna constitute a source for enhanced optical near-fields, which are strongly localized at the metal surface.
A particular interesting type of antennas are pairs of metal particles separated by a small insulating gap. For anti-symmetric gap modes charges of opposite sign reside across the gap. The dominating field-components are normal to the metal surface and due to the boundary conditions they are sizable only inside the gap. The attractive Coulomb interaction increases the surface-charge accumulation at the gap and enhanced optical fields occur within the insulating gap. The Coulomb interaction increases with decreasing gap size and extreme localization and strongest intensity enhancement is expected for small gap sizes.
In this thesis optical antennas with extremely small gaps, just slightly larger than inter-atomic distances, are investigated by means of optical and electrical excitation. In the case of electrical excitation electron tunneling across the antenna gap is exploited.
At the beginning of this thesis little was known about the optical properties of antennas with atomic scale gaps. Standard measurement techniques of field confinement and enhancement involving well-separated source, sample and detector are not applicable at atomic length-scales due to the interaction of the respective elements. Here, an elegant approach has been found. It is based on the fact that for closely-spaced metallic particles the energy splitting of a hybridized mode pair, consisting of symmetric and anti-symmetric mode, provides a direct measure for the Coulomb interaction over the gap. Gap antennas therefore possess an internal ruler which sensitively reports the size of the gap.
Upon self-assembly side-by-side aligned nanorods with gap sizes ranging from 2 to 0.5nm could be obtained. These antennas exhibit various symmetric and anti-symmetric modes in the visible range. In order to reveal optical modes of all symmetries a novel scattering setup has been developed and is successfully applied. Careful analysis of the optical spectra and comparison to numerical simulations suggests that extreme field confinement and localization can occur in gaps down to 0.5 nm. This is possibly the limit of plasmonic enhancement since for smaller gaps electron tunneling as well as non-locality of the dielectric function affect plasmonic resonances.
The strongly confined and intense optical fields provided by atomic-scale gaps are ideally suited for enhanced light-matter interaction. The interplay of intense optical-frequency fields and static electric fields or currents is of great interest for opto-electronic applications. In this thesis a concept has been developed, which allows for the electrical connection of optical antennas. By means of numerical simulations the concept was first verified for antennas with gap sizes on the order of 25 nm. It could be shown, that by attaching the leads at positions of a field minimum the resonant properties are nearly undisturbed. The resonance wavelengths shift only by a small amount with respect to isolated antennas and the numerically calculated near-field intensity enhancement is about 1000, which is just slightly lower than for an unconnected antenna.
The antennas are fabricated from single-crystalline gold and exhibit superior optical and electrical properties. In particular, the conductivity is a factor of 4 larger with respect to multi-crystalline material, the resistance of the gap is as large as 1 TOhm and electric fields of at least 10^8 V/m can be continuously applied without damage. Optical scattering spectra reveal well-pronounced and tunable antenna resonances, which demonstrates the concept of electrically-connected antennas also experimentally.
By combining atomic-scale gaps and electrically-connected optical antennas a novel sub-wavelength photon source has been realized. To this end an antenna featuring an atomic scale gap is electrically driven by quantum tunneling across the antenna gap. The optical frequency components of this fluctuating current are efficiently converted to photons by the antenna. Consequently, light generation and control are integrated into a planar single-material nano-structure. Tunneling junctions are realized by positioning gold nanoparticles into the antenna gap, using an atomic force microscope. The presence of a stable tunneling junction between antenna and particle is demonstrated by measuring its distinct current-voltage characteristic. A DC voltage is applied to the junction and photons are generated by inelastically tunneling electrons via the enhanced local density of photonic states provided by the antenna resonance. The polarization of the emitted light is found to be along the antenna axis and the directivity is given by the dipolar antenna mode. By comparing electroluminescence and scattering spectra of different antennas, it has been shown that the spectrum of the generated light is determined by the geometry of the antenna. Moreover, the light generation process is enhanced by two orders of magnitude with respect to a non-resonant structure.
The controlled fabrication of the presented single-crystalline structures has not only pushed the frontiers of nano-technology, but the extreme confinement and enhancement of optical fields as well as the light generation by tunneling electrons lays a groundwork for a variety of fundamental studies and applications.
Field localization down to the (sub-)nanometer scale is a prerequisite for optical spectroscopy with near-atomic resolution. Indeed, recently first pioneering experiments have achieved molecular resolution exploiting plasmon-enhanced Raman scattering. The small modal volume of antennas with atomic-scale gaps can lead to light-matter interaction in the strong coupling regime. Quantum electro-dynamical effects such as Rabi splitting or oscillations are likely when a single emitter is placed into resonant structures with atomic-scale gaps.
The concept of electrically-connected optical antennas is expected to be widely applied within the emerging field of electro-plasmonics. The sub-wavelength photon source developed during this thesis
will likely gain attention for future plasmonic nanocircuits. It is envisioned that in such a circuit the optical signal provided by the source is processed at ultrafast speed and nanometer-scales on the chip and is finally converted back into an electronic signal. An integrated optical transistor could be realized by means of photon-assisted tunneling. Moreover, it would be interesting to investigate, if it is possible to imprint the fermionic nature of electrons onto photons in order to realize an electrically-driven source of single photons. Non-classical light sources with the potential for on-chip integration could be built from electrically-connected antennas and are of great interest for quantum communication. To this end single emitters could be placed in the antenna gap or single electron tunneling could be achieved by means of a single-channel quantum point contact or the Coulomb-blockade effect.
Die vorliegende Arbeit beschäftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungsträger unterhalb der de-Broglie-Wellenlänge eingeschränkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als künstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikrosäulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavität, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission über Fabry-Perot Moden, als auch eine laterale Emission über Flustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungsträgern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt über das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die Dämpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erhöht werden kann. In diesem Regime können Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpströmen realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt.
The scope of this work is to develop a novel single-molecule imaging technique by combining atomic force microscopy (AFM) and optical fluorescence microscopy. The technique is used for characterizing the structural properties of multi-protein complexes. The high-resolution fluorescence microscopy and AFM are combined (FIONA-AFM) to allow for the identification of individual proteins in such complexes. This is achieved by labeling single proteins with fluorescent dyes and determining the positions of these fluorophores with high precision in an optical image. The same area of the sample is subsequently scanned by AFM. Finally, the two images are aligned and the positions of the fluorophores are displayed on top of the topographical data. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, fluorescence and AFM information can be aligned with an accuracy better than 10 nm, which is sufficient to identify single fluorescently labeled proteins in most multi-protein complexes. The limitations of localization precision and accuracy in fluorescence and AFM images are investigated, including their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two complementary techniques opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5–10 nm) information about the conformational properties of multi-protein complexes while the fluorescence can indicate spatial relationships of the proteins within the complexes. Additionally, computer simulations are performed in order to validate the accuracy of the registration algorithm.
The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below:
1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion.
2) The magnetization relaxation time T\(_2\) und T*\(_2\)
, which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T*\(_2\) can be used to obtain information about the microstructure of the lung.
3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation.