Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Doctoral Thesis (2)
Language
- English (2)
Keywords
Institute
Advanced Analytics in Operations Management and Information Systems: Methods and Applications
(2019)
The digital transformation of business and society presents enormous potentials for companies across all sectors. Fueled by massive advances in data generation, computing power, and connectivity, modern organizations have access to gigantic amounts of data. Companies seek to establish data-driven decision cultures to leverage competitive advantages in terms of efficiency and effectiveness. While most companies focus on descriptive tools such as reporting, dashboards, and advanced visualization, only a small fraction already leverages advanced analytics (i.e., predictive and prescriptive analytics) to foster data-driven decision-making today. Therefore, this thesis set out to investigate potential opportunities to leverage prescriptive analytics in four different independent parts.
As predictive models are an essential prerequisite for prescriptive analytics, the first two parts of this work focus on predictive analytics. Building on state-of-the-art machine learning techniques, we showcase the development of a predictive model in the context of capacity planning and staffing at an IT consulting company. Subsequently, we focus on predictive analytics applications in the manufacturing sector. More specifically, we present a data science toolbox providing guidelines and best practices for modeling, feature engineering, and model interpretation to manufacturing decision-makers. We showcase the application of this toolbox on a large data-set from a German manufacturing company.
Merely using the improved forecasts provided by powerful predictive models enables decision-makers to generate additional business value in some situations. However, many complex tasks require elaborate operational planning procedures. Here, transforming additional information into valuable actions requires new planning algorithms. Therefore, the latter two parts of this thesis focus on prescriptive analytics. To this end, we analyze how prescriptive analytics can be utilized to determine policies for an optimal searcher path problem based on predictive models. While rapid advances in artificial intelligence research boost the predictive power of machine learning models, a model uncertainty remains in most settings. The last part of this work proposes a prescriptive approach that accounts for the fact that predictions are imperfect and that the arising uncertainty needs to be considered. More specifically, it presents a data-driven approach to sales-force scheduling. Based on a large data set, a model to predictive the benefit of additional sales effort is trained. Subsequently, the predictions, as well as the prediction quality, are embedded into the underlying team orienteering problem to determine optimized schedules.
Traditional fashion retailers are increasingly hard-pressed to keep up with their digital competitors. In this context, the re-invention of brick-and-mortar stores as smart retail environments is being touted as a crucial step towards regaining a competitive edge. This thesis describes a design-oriented research project that deals with automated product tracking on the sales floor and presents three smart fashion store applications that are tied to such localization information: (i) an electronic article surveillance (EAS) system that distinguishes between theft and non-theft events, (ii) an automated checkout system that detects customers’ purchases when they are leaving the store and associates them with individual shopping baskets to automatically initiate payment processes, and (iii) a smart fitting room that detects the items customers bring into individual cabins and identifies the items they are currently most interested in to offer additional customer services (e.g., product recommendations or omnichannel services). The implementation of such cyberphysical systems in established retail environments is challenging, as architectural constraints, well-established customer processes, and customer expectations regarding privacy and convenience pose challenges to system design. To overcome these challenges, this thesis leverages Radio Frequency Identification (RFID) technology and machine learning techniques to address the different detection tasks. To optimally configure the systems and draw robust conclusions regarding their economic value contribution, beyond technological performance criteria, this thesis furthermore introduces a service operations model that allows mapping the systems’ technical detection characteristics to business relevant metrics such as service quality and profitability. This analytical model reveals that the same system component for the detection of object transitions is well suited for the EAS application but does not have the necessary high detection accuracy to be used as a component of an automated checkout system.