Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Doctoral Thesis (7)
Keywords
- Fernerkundung (5)
- Landwirtschaft (2)
- Remote Sensing (2)
- Remote sensing (2)
- Westafrika (2)
- Zentralasien (2)
- AVHRR (1)
- Agrarlandschaft (1)
- Agricultural land use (1)
- Agriculture (1)
Institute
Sonstige beteiligte Institutionen
As a cradle of ancient Chinese civilization, the Yellow River Basin has a very long human-environment interrelationship, where early anthropogenic activities re- sulted in large scale landscape modifications. Today, the impact of this relationship
has intensified further as the basin plays a vital role for China’s continued economic
development. It is one of the most densely-populated, fastest growing, and most dynamic
regions of China with abundant natural and environmental resources providing a livelihood for almost 190 million people. Triggered by fundamental economic reforms, the
basin has witnessed a spectacular economic boom during the last decades and can be
considered as an exemplary blueprint region for contemporary dynamic Global Change
processes occurring throughout the country, which is currently transitioning from an
agrarian-dominated economy into a modern urbanized society. However, this resourcesdemanding growth has led to profound land use changes with adverse effects on the Yellow
River social-ecological systems, where complex challenges arise threatening a long-term
sustainable development.
Consistent and continuous remote sensing-based monitoring of recent and past land
cover and land use change is a fundamental requirement to mitigate the adverse impacts
of Global Change processes. Nowadays, technical advancement and the multitude of
available satellite sensors, in combination with the opening of data archives, allow the
creation of new research perspectives in regional land cover applications over heterogeneous landscapes at large spatial scales. Despite the urgent need to better understand the
prevailing dynamics and underlying factors influencing the current processes, detailed
regional specific land cover data and change information are surprisingly absent for this
region.
In view of the noted research gaps and contemporary developments, three major objectives are defined in this thesis. First (i), the current and most pressing social-ecological
challenges are elaborated and policy and management instruments towards more sustainability are discussed. Second (ii), this thesis provides new and improved insights on
the current land cover state and dynamics of the entire Yellow River Basin. Finally (iii),
the most dominant processes related to mining, agriculture, forest, and urban dynamics
are determined on finer spatial and temporal scales.
The complex and manifold problems and challenges that result from long-term abuse
of the water and land resources in the basin have been underpinned by policy choices,
cultural attitude, and institutions that have evolved over centuries in China. The tremendous economic growth that has been mainly achieved by extracting water and exploiting
land resources in a rigorous, but unsustainable manner, might not only offset the economic benefits, but could also foster social unrest. Since the early emergence of the first Chinese dynasties, flooding was considered historically as a primary issue in river management and major achievements have been made to tame the wild nature of the Yellow
River. Whereas flooding is therefore largely now under control, new environmental and
social problems have evolved, including soil and water pollution, ecological degradation,
biodiversity decline, and food security, all being further aggravated by anthropogenic
climate change. To resolve the contemporary and complex challenges, many individual
environmental laws and regulations have been enacted by various Chinese ministries.
However, these policies often pursue different, often contradictory goals, are too general
to tackle specific problems and are usually implemented by a strong top-down approach.
Recently, more flexible economic and market-based incentives (pricing, tradable permits,
investments) have been successfully adopted, which are specifically tailored to the respective needs, shifting now away from the pure command and regulating instruments.
One way towards a more holistic and integrated river basin management could be the
establishment of a common platform (e.g. a Geographical Information System) for data
handling and sharing, possibly operated by the Yellow River Basin Conservancy Commission (YRCC), where available spatial data, statistical information and in-situ measures
are coalesced, on which sustainable decision-making could be based. So far, the collected
data is hardly accessible, fragmented, inconsistent, or outdated.
The first step to address the absence and lack of consistent and spatially up-to-date
information for the entire basin capturing the heterogeneous landscape conditions was
taken up in this thesis. Land cover characteristics and dynamics were derived from
the last decade for the years 2003 and 2013, based on optical medium-resolution hightemporal MODIS Normalized Differenced Vegetation Index (NDVI) time series at 250 m.
To minimize the inherent influence of atmospheric and geometric interferences found in
raw high temporal data, the applied adaptive Savitzky-Golay filter successfully smoothed
the time series and substantially reduced noise. Based on the smoothed time series
data, a large variety of intra-annual phenology metrics as well as spectral and multispectral annual statistics were derived, which served as input variables for random
forest (RF) classifiers. High quality reference data sets were derived from very high
resolution imagery for each year independently of which 70 % trained the RF models. The
accuracy assessments for all regionally specific defined thematic classes were based on the
remaining 30 % reference data split and yielded overall accuracies of 87 % and 84 % for
2003 and 2013, respectively. The first regional adapted Yellow River Land Cover Products
(YRB LC) depict the detail spatial extent and distribution of the current land cover status
and dynamics. The novel products overall differentiate overall 18 land cover and use
classes, including classes of natural vegetation (terrestrial and aquatic), cultivated classes,
mosaic classes, non-vegetated, and artificial classes, which are not presented in previous
land cover studies so far.
Building on this, an extended multi-faceted land cover analysis on the most prominent
land cover change types at finer spatial and temporal scales provides a better and more
detailed picture of the Yellow River Basin dynamics. Precise spatio-temporal products
about mining, agriculture, forest, and urban areas were examined from long-trem Landsat
satellite time series monitored at annual scales to capture the rapid rate of change in four
selected focus regions. All archived Landsat images between 2000 and 2015 were used to
derive spatially continuous spectral-temporal, multi-spectral, and textural metrics. For
each thematic region and year RF models were built, trained and tested based on a stablepixels reference data set. The automated adaptive signature (AASG) algorithm identifies those pixels that did not change between the investigated time periods to generate a
mono-temporal reference stable-pixels data set to keep manual sampling requirements
to a minimum level. Derived results gained high accuracies ranging from 88 % to 98 %.
Throughout the basin, afforestation on the Central Loess Plateau and urban sprawl are
identified as most prominent drivers of land cover change, whereas agricultural land
remained stable, only showing local small-scale dynamics. Mining operations started in
2004 on the Qinghai-Tibet Plateau, which resulted in a substantial loss of pristine alpine
meadows and wetlands.
In this thesis, a novel and unique regional specific view of current and past land cover
characteristics in a complex and heterogeneous landscape was presented by using a
multi-source remote sensing approach. The delineated products hold great potential for
various model and management applications. They could serve as valuable components
for effective and sustainable land and water management to adapt and mitigate the
predicted consequences of Global Change processes.
West Africa is one of the fastest growing regions in the world with annual population growth rates of more than three percent for several countries. Since the 1950s, West Africa experienced a fivefold increase of inhabitants, from 71 to 353 million people in 2015 and it is expected that the region’s population will continue to grow to almost 800 million people by the year 2050. This strong trend has and will have serious consequences for food security since agricultural productivity is still on a comparatively low level in most countries of West Africa. In order to compensate for this low productivity, an expansion of agricultural areas is rapidly progressing. The mapping and monitoring of agricultural areas in West Africa is a difficult task even on the basis of remote sensing. The small scale extensive farming practices with a low level of agricultural inputs and mechanization make the delineation of cultivated land from other land cover and land use (LULC) types highly challenging. In addition, the frequent cloud coverage in the region considerably decreases the availability of earth observation datasets. For the accurate mapping of agricultural area in West Africa, high temporal as well as spatial resolution is necessary to delineate the small-sized fields and to obtain data from periods where different LULC types are distinguishable. However, such consistent time series are currently not available for West Africa. Thus, a spatio-temporal data fusion framework was developed in this thesis for the generation of high spatial and temporal resolution time series.
Data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) enjoyed increasing popularity during recent years but they have hardly been used for the application on larger scales. In order to make it applicable for this purpose and to increase the input data availability, especially in cloud-prone areas such as West Africa, the ESTARFM framework was developed in this thesis introducing several enhancements. An automatic filling of cloud gaps was included in the framework in order to use even partly cloud-covered Landsat images for the fusion without producing gaps on the output images. In addition, the ESTARFM algorithm was improved to automatically account for regional differences in the heterogeneity of the study region. Further improvements comprise the automation of the time series generation as well as the significant acceleration of the processing speed through parallelization. The performance of the developed ESTARFM framework was tested by fusing an 8-day NDVI time series from Landsat and MODIS data for a focus area of 98,000 km² in the border region between Burkina Faso and Ghana. The results of this test show the capability of the ESTARFM framework to accurately produce high temporal resolution time series while maintaining the spatial detail, even in such a heterogeneous and cloud-prone region.
The successfully tested framework was subsequently applied to generate consistent time series as the basis for the mapping of agricultural area in Burkina Faso for the years 2001, 2007, and 2014. In a first step, high temporal (8-day) and high spatial (30 m) resolution NDVI time series for the entire country and the three years were derived with the ESTARFM framework. More than 500 Landsat scenes and 3000 MODIS scenes were automatically processed for this purpose. From the fused ESTARFM NDVI time series, phenological metrics were extracted and together with the single time steps of NDVI served as input for the delineation of rainfed agricultural areas, irrigated agricultural areas and plantations. The classification was conducted with the random forest algorithm at a 30 m spatial resolution for entire Burkina Faso and the three years 2001, 2007, and 2014. For the training and validation of the classifier, a randomly sampled reference dataset was generated from Google Earth images based on expert knowledge of the region. The overall classification accuracies of 92% (2001), 91% (2007), and 91% (2014) indicate the well-functioning of the developed methodology. The resulting maps show an expansion of agricultural area of 91% from about 61,000 km² in 2001 to 116,900 km² in 2014. While rainfed agricultural areas account for the major part of this increase, irrigated areas and plantations also spread considerably. Especially the expansion of irrigation systems and plantation area can be explained by the promotion through various national and international development projects. The increase of agricultural areas goes in line with the rapid population growth in most of Burkina Faso’s provinces which still had available land resources for an expansion of agricultural area. An analysis of the development of agricultural areas in the vicinity of protected areas highlighted the increased human pressure on these reserves. The protection of the remnant habitats for flora and fauna while at the same time improving food security for a rapidly growing population, are the major challenges for the region in the future.
The developed ESTARFM framework showed great potential beyond its utilization for the mapping of agricultural area. Other large-scale research that requires a sufficiently high temporal and spatial resolution such as the monitoring of land degradation or the investigation of land surface phenology could greatly benefit from the application of this framework.
Rapid population growth in West Africa has led to expansion in croplands due to the need to grow more food to meet the rising food demand of the burgeoning population. These expansions negatively impact the sub-region's ecosystem, with implications for water and soil quality, biodiversity and climate. In order to appropriately monitor the changes in croplands and assess its impact on the ecosystem and other environmental processes, accurate and up-to-date information on agricultural land use is required. But agricultural land use mapping (i.e. mapping the spatial distribution of crops and croplands) in West Africa has been challenging due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. This study, therefore, investigated the possibilities of improving agricultural land use mapping by utilizing optical satellite images with higher spatial and temporal resolution as well as images from Synthetic Aperture Radar (SAR) systems which are near-independent of weather conditions. The study was conducted at both watershed and regional scales.
At watershed scale, classification of different crop types in three watersheds in Ghana, Burkina Faso and Benin was conducted using multi-temporal: (1) only optical images (RapidEye) and (2) optical plus dual polarimetric (VV/VH) SAR images (TerraSAR-X). In addition, inter-annual or short term (2-3 years) changes in cropland area in the past ten years were investigated using historical Landsat images. Results obtained indicate that the use of only optical images to map different crop types in West Africa can achieve moderate classification accuracies (57% to 71%). Overlaps between the cropping calendars of most crops types and certain inter-croppings pose a challenge to optical images in achieving an adequate separation between those crop classes. Integration of SAR images, however, can improve classification accuracies by between 8 and 15%, depending on the number of available images and their acquisition dates. The sensitivity of SAR systems to different crop canopy architectures and land surface characteristics improved the separation between certain crop types. The VV polarization of TerraSAR-X was found to better discrimination between crop types than the VH. Images acquired between August and October were found to be very useful for crop mapping in the sub-region due to structural differences in some crop types during this period.
At the regional scale, inter-annual or short term changes in cropland area in the Sudanian Savanna agro-ecological zone in West Africa were assessed by upscaling historical cropland information derived at the watershed scale (using Landsat imagery) unto a coarse spatial resolution, but geographically large, satellite imagery (MODIS) using regression based modeling. The possibility of using such regional scale cropland information to improve government-derived agricultural statistics was investigated by comparing extracted cropland area from the fractional cover maps with district-level agricultural statistics from Ghana The accuracy of the fractional cover maps (MAE between 14.2% and 19.1%) indicate that the heterogeneous agricultural landscape of West Africa can be suitably represented at the regional or continental scales by estimating fractional cropland cover on low resolution Analysis of the results revealed that cropland area in the Sudanian Savanna zone has experienced inter-annual or short term fluctuations in the past ten years due to a variety of factors including climate factors (e.g. floods and droughts), declining soil fertility, population increases and agricultural policies such as fertilizer subsidies. Comparison of extracted cropland area from the fractional cover maps with government's agricultural statistics (MoFA) for seventeen districts (second administrative units) in Ghana revealed high inconsistencies in the government statistics, and highlighted the potential of satellite derived cropland information at regional scales to improve national/sub-national agricultural statistics in West Africa.
The results obtained in this study is promising for West Africa, considering the recent launch of optical (Landsat 8) and SAR sensors (Sentinel-1) that will provide free data for crop mapping in the sub-region. This will improve chances of obtaining adequate satellite images acquired during the cropping season for agricultural land use mapping and bolster opportunities of operationalizing agricultural land use mapping in West Africa. This can benefit a wide range of biophysical and economic models and improve decision making based on their results.
The eminent importance of snow cover for climatic, hydrologic, anthropogenic, and economic reasons has been widely discussed in scientific literature. Up to 50% of the Northern Hemisphere is covered by snow at least temporarily, turning snow to the most prevalent land cover types at all. Depending on regular precipitation and temperatures below freezing point it is obvious that a changing climate effects snow cover characteristics fundamentally. Such changes can have severe impacts on local, national, and even global scale. The region of Central Asia is not an exception from this general rule, but are the consequences accompanying past, present, and possible future changes in snow cover parameters of particular importance. Being characterized by continental climate with hot and dry summers most precipitation accumulates during winter and spring months in the form of snow. The population in this 4,000,000 km² vast area is strongly depending on irrigation to facilitate agriculture. Additionally, electricity is often generated by hydroelectric power stations. A large proportion of the employed water originates from snow melt during spring months, implying that changes in snow cover characteristics will automatically affect both the total amount of obtainable water and the time when this water becomes available. The presented thesis explores the question how the spatial extent of snow covered surface has evolved since the year 1986. This investigation is based on the processing of medium resolution remote sensing data originating from daily MODIS and AVHRR sensors, thus forming a unique approach of snow cover analysis in terms of temporal and spatial resolution. Not only duration but also onset and melt of snow coverage are tracked over time, analyzing for systematic changes within this 26 years lasting time span. AVHRR data are processed from raw Level 1B orbit data to Level 3 thematic snow cover products. Both, AVHRR and MODIS snow maps undergo a further post-processing, producing daily full-area mosaics while completely eliminating inherent cloud cover. Snow cover parameters are derived based on these daily and cloud-free time series, allowing for a detailed analysis of current status and changes. The results confirm the predictions made by coarse resolution predictions from climate models: Central Asian snow cover is changing, posing new challenges for the ecosystem and future water supply. The changes, however, are not aimed at only one direction. Regions with decreasing snow cover exist as well as those where the duration of snow cover increases. A shift towards earlier snow cover start and melt can be observed, posing a serious challenge to water management authorities due to a changed runoff regime.
Agriculture is mankind’s primary source of food production and plays the key role for cereal supply to humanity. One of the future challenges will be to feed a constantly growing population, which is expected to reach more than nine billion by 2050. The potential to expand cropland is limited, and enhancing agricultural production efficiency is one important means to meet the future food demand. Hence, there is an increasing demand for dependable, accurate and comprehensive agricultural intelligence on crop production. The value of satellite earth observation (EO) data for agricultural monitoring is well recognized. One fundamental requirement for agricultural monitoring is routinely updated information on crop acreage and the spatial distribution of crops. With the technical advancement of satellite sensor systems, imagery with higher temporal and finer spatial resolution became available. The classification of such multi-temporal data sets is an effective and accurate means to produce crop maps, but methods must be developed that can handle such large and complex data sets. Furthermore, to properly use satellite EO for agricultural production monitoring a high temporal revisit frequency over vast geographic areas is often necessary. However, this often limits the spatial resolution that can be used. The challenge of discriminating pixels that correspond to a particular crop type, a prerequisite for crop specific agricultural monitoring, remains daunting when the signal encoded in pixels stems from several land uses (mixed pixels), e.g. over heterogeneous landscapes where individual fields are often smaller than individual pixels.
The main purposes of the presented study were (i) to assess the influence of input dimensionality and feature selection on classification accuracy and uncertainty in object-based crop classification, (ii) to evaluate if combining classifier algorithms can improve the quality of crop maps (e.g. classification accuracy), (iii) to assess the spatial resolution requirements for crop identification via image classification.
Reporting on the map quality is traditionally done with measures that stem from the confusion matrix based on the hard classification result. Yet, these measures do not consider the spatial variation of errors in maps. Measures of classification uncertainty can be used for this purpose, but they have attained only little attention in remote sensing studies. Classifier algorithms like the support vector machine (SVM) can estimate class memberships (the so called soft output) for each classified pixel or object. Based on these estimations, measures of classification uncertainty can be calculated, but it has not been analysed in detail, yet, if these are reliable in predicting the spatial distribution of errors in maps. In this study, SVM was applied for the classification of agricultural crops in irrigated landscapes in Middle Asia at the object-level. Five different categories of features were calculated from RapidEye time series data as classification input. The reliability of classification uncertainty measures like entropy, derived from the soft output of SVM, with regard to predicting the spatial distribution of error was evaluated. Further, the impact of the type and dimensionality of the input data on classification uncertainty was analysed. The results revealed that SMVs applied to the five feature categories separately performed different in classifying different types of crops. Incorporating all five categories of features by concatenating them into one stacked vector did not lead to an increase in accuracy, and partly reduced the model performance most obviously because of the Hughes phenomena. Yet, applying the random forest (RF) algorithm to select a subset of features led to an increase of classification accuracy of the SVM. The feature group with red edge-based indices was the most important for general crop classification, and the red edge NDVI had an outstanding importance for classifying crops. Two measures of uncertainty were calculated based on the soft output from SVM: maximum a-posteriori probability and alpha quadratic entropy. Irrespective of the measure used, the results indicate a decline in classification uncertainty when a dimensionality reduction was performed. The two uncertainty measures were found to be reliable indicators to predict errors in maps. Correctly classified test cases were associated with low uncertainty, whilst incorrectly test cases tended to be associated with higher uncertainty.
The issue of combining the results of different classifier algorithms in order to increase classification accuracy was addressed. First, the SVM was compared with two other non-parametric classifier algorithms: multilayer perceptron neural network (MLP) and RF. Despite their comparatively high classification performance, each of the tested classifier algorithms tended to make errors in different parts of the input space, e.g. performed different in classifying crops. Hence, a combination of the complementary outputs was envisaged. To this end, a classifier combination scheme was proposed, which is based on existing algebraic operators. It combines the outputs of different classifier algorithms at the per-case (e.g. pixel or object) basis. The per-case class membership estimations of each classifier algorithm were compared, and the reliability of each classifier algorithm with respect to classifying a specific crop class was assessed based on the confusion matrix. In doing so, less reliable classifier algorithms were excluded at the per-class basis before the final combination. Emphasis was put on evaluating the selected classification algorithms under limiting conditions by applying them to small input datasets and to reduced training sample sets, respectively. Further, the applicability to datasets from another year was demonstrated to assess temporal transferability. Although the single classifier algorithms performed well in all test sites, the classifier combination scheme provided consistently higher classification accuracies over all test sites and in different years, respectively. This makes this approach distinct from the single classifier algorithms, which performed different and showed a higher variability in class-wise accuracies. Further, the proposed classifier combination scheme performed better when using small training set sizes or when applied to small input datasets, respectively.
A framework was proposed to quantitatively define pixel size requirements for crop identification via image classification. That framework is based on simulating how agricultural landscapes, and more specifically the fields covered by one crop of interest, are seen by instruments with increasingly coarser resolving power. The concept of crop specific pixel purity, defined as the degree of homogeneity of the signal encoded in a pixel with respect to the target crop type, is used to analyse how mixed the pixels can be (as they become coarser) without undermining their capacity to describe the desired surface properties (e.g. to distinguish crop classes via supervised or unsupervised image classification). This tool can be modulated using different parameterizations to explore trade-offs between pixel size and pixel purity when addressing the question of crop identification. Inputs to the experiments were eight multi-temporal images from the RapidEye sensor. Simulated pixel sizes ranged from 13 m to 747.5 m, in increments of 6.5 m. Constraining parameters for crop identification were defined by setting thresholds for classification accuracy and uncertainty. Results over irrigated agricultural landscapes in Middle Asia demonstrate that the task of finding the optimum pixel size did not have a “one-size-fits-all” solution. The resulting values for pixel size and purity that were suitable for crop identification proved to be specific to a given landscape, and for each crop they differed across different landscapes. Over the same time series, different crops were not identifiable simultaneously in the season and these requirements further changed over the years, reflecting the different agro-ecological conditions the investigated crops were growing in. Results further indicate that map quality (e.g. classification accuracy) was not homogeneously distributed in a landscape, but that it depended on the spatial structures and the pixel size, respectively. The proposed framework is generic and can be applied to any agricultural landscape, thereby potentially serving to guide recommendations for designing dedicated EO missions that can satisfy the requirements in terms of pixel size to identify and discriminate crop types.
Regarding the operationalization of EO-based techniques for agricultural monitoring and its application to a broader range of agricultural landscapes, it can be noted that, despite the high performance of existing methods (e.g. classifier algorithms), transferability and stability of such methods remain one important research issue. This means that methods developed and tested in one place might not necessarily be portable to another place or over several years, respectively. Specifically in Middle Asia, which was selected as study region in this thesis, classifier combination makes sense due to its easy implementation and because it enhanced classification accuracy for classes with insufficient training samples. This observation makes it interesting for operational contexts and when field reference data availability is limited. Similar to the transferability of methods, the application of only one certain kind of EO data (e.g. with one specific pixel size) over different landscapes needs to be revisited and the synergistic use of multi-scale data, e.g. combining remote sensing imagery of both fine and coarse spatial resolution, should be fostered. The necessity to predict and control the effects of spatial and temporal scale on crop classification is recognized here as a major goal to achieve in EO-based agricultural monitoring.
Zum Verständnis der komplexen Wechselwirkungen innerhalb des Klimasystems der Erde sind Kenntnisse über den hydrologischen Zyklus und den Energiekreislauf essentiell. Eine besondere Rolle obliegt hierbei der Evapotranspiration (ET), da sie eine wesentliche Teilkomponente beider oben erwähnter Kreisläufe ist. Die exakte Quantifizierung der regionalen, tatsächlichen Evapotranspiration innerhalb der Wasser- und Energiekreisläufe der Erdoberfläche auf unterschiedlichen zeitlichen und räumlichen Skalen ist für hydrologische, klimatologische und agronomische Fragestellungen von großer Bedeutung. Dabei ist eine realistische Abschätzung der regionalen tatsächlichen Evapotranspiration die wichtigste Herausforderung der hydrologischen Modellierung. Besonders die unterschiedlichen räumlichen und zeitlichen Auflösungen von Satelliteninformationen machen die Fernerkundung sowohl für globale als auch regionale hydrologischen Fragestellungen interessant. Zusätzlich zur Notwendigkeit des Prozessverständnisses des Wasserkreislaufs auf globaler Ebene kommt dessen regionale Bedeutung für die Landwirtschaft, insbesondere in Bewässerungssystemen arider Regionen. In ariden Klimazonen übersteigt die Menge der Verdunstung oft bei weitem die Niederschlagsmengen. Aufgrund der geringen Niederschlagsmenge muss in ariden agrarischen Regionen das zum Pflanzenwachstum benötigte Wasser mit Hilfe künstlicher Bewässerung aufgebracht werden. Der jeweilige lokale Bewässerungsbedarf hängt von der Feldfrucht und deren Wachstumsphase, den Klimabedingungen, den Bodeneigenschaften und der Ausdehnung der Wurzelzone ab. Die Evapotranspiration ist als Komponente der regionalen Wasserbilanz eine wichtige Steuerungsgröße und Effizienzindikator für das lokale Bewässerungsmanagement. Die Bewässe-rungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkom-men. Dies wird als einer der Hauptgründe für die weltweit steigende Wasserknappheit identifiziert. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den OECD Staaten im Mittel bei etwa 44 %, in den Staaten Mittelasiens bei über 90 %.
Bei der Erstellung der vorliegenden Arbeit kam die Methode der residualen Bestimmung der Energiebilanz zum Einsatz. Eines der weltweit am häufigsten eingesetzten und vali-dierten fernerkundlichen Residualmodelle zur ET Ableitung ist das SEBAL-Modell (Surface Energy Balance Algorithm for Land, mit über 40 veröffentlichten Studien. SEBAL eignet sich zur Quantifizierung der Verdunstung großflächiger Gebiete und wurde bisher über-wiegend in der Bewässerungslandwirtschaft eingesetzt. Aus diesen Gründen wurde es für die Bearbeitung der Fragestellungen in dieser Arbeit ausgewählt. SEBAL verwendet physikalische und empirische Beziehungen zur Berechnung der Energiebilanzkomponenten basierend auf Fernerkundungsdaten, bei gleichzeitig minimalem Einsatz bodengestützter Daten. Als Eingangsdaten werden u.a. Informationen über Strahlung, Bodenoberflächentemperatur, NDVI, LAI und Albedo verwendet. Zusätzlich zu SEBAL wurden einige Komponenten der SEBAL Weiterentwicklung METRIC (Mapping Evapotranspiration with Internalized Calibration) verwendet, um die Modellierung der ET vorzunehmen. METRIC überwindet einige Limitierungen des SEBAL Verfahrens und kann beispielsweise auch in stärker reliefierten Regionen angewendet werden. Außerdem ermöglicht die Integration einer gebietsspezifischen Referenz-ET sowie einer Landnutzungsklassifikation eine bessere regionale Anpassung des Residualverfahrens. Unter der Annahme der Bedingungen zum Zeitpunkt der Fernerkundungsaufnahme ergibt sich die Energiebilanz an der Erdoberfläche
RN = LvE + H + G. Demnach teilt sich die verfügbare Strahlungsenergie RN in die Komponenten latenter Wärme (LVE), fühlbarer Wärme (H) und Bodenwärme (G) auf. Durch Umstellen der Gleichung kann auf die latente Wärme geschlossen werden.
Das wesentliche Ziel der vorliegenden Arbeit ist die Optimierung, Erweiterung und Validierung des ausgewählten SEBAL Verfahrens zur regionalen Modellierung der Energiebilanzkomponenten und der daraus abgeleiteten tatsächlichen Evapotranspiration. Die validierten Modellergebnisse der Gebietsverdunstung der Jahre 2009-2011 sollen anschließend als Grundlage dienen, das Gesamtverständnis der regionalen Prozesse des Wasserkreislaufs zu verbessern. Die Arbeit basiert auf der Datengrundlage von MODIS Daten mit 1 km räumlicher Auflösung. Während die Komponenten verfügbare Strahlungsenergie und fühlbarer Wärmestrom physikalisch basiert ermittelt werden, beruht die Berechnung des Bodenwärmestroms ausschließlich auf empirischen Abschätzungen. Ein großer Nachteil des empirischen Ansatzes ist die Vernachlässigung des zeitlichen Versatzes zwischen Strahlungsbilanz und Bodenwärmestrom in Abhängigkeit der aktuellen Bodenfeuchtesituation.
Ein besonderer Schwerpunkt der vorliegenden Arbeit liegt auf der Bewertung und Verbesserung der Modellgüte des Bodenwärmestroms durch Verwendung eines neuen Ansatzes zur Integration von Bodenfeuchteinformationen. Daher wird in der Arbeit ein physikalischer Ansatz entwickelt der auf dem Ansatz der periodischen Temperaturveränderung basiert. Hierbei wurde neben dem ENVISAT ASAR SSM Produkt der TU Wien das operationelle Oberflächenbodenfeuchteprodukt ASCAT SSM als Fernerkundungseingangsdaten ausgewählt. Die mit SEBAL modellierten Energiebilanzkomponenten werden durch eine intensive Validierung mit bodengestützten Messungen bewertet, die Messungen stammen von Bodensensoren und Daten einer Eddy-Kovarianz-Station aus den Jahren 2009 bis 2011.
Die Region Khorezm gilt als charakteristisch für die wasserbezogene Problematik der Bewässerungslandwirtschaft Mittelasiens und wurde als Untersuchungsgebiet für diese Arbeit ausgewählt. Die wesentlichen Probleme dieser Region entstehen durch die nach wie vor nicht nachhaltige Land- und Wassernutzung, das marode Bewässerungsnetz mit einer Verlustrate von bis zu 40 % und der Bodenversalzung aufgrund hoher Grundwasserspiegel. Im Untersuchungsgebiet wurden in den Jahren 2010 und 2011 umfangreiche Feldarbeiten zur Erhebung lokaler bodengestützter Informationen durchgeführt.
Bei der Evaluierung der modellierten Einzelkomponenten ergab sich für die Strahlungsbi-lanz eine hohe Modellgüte (R² > 0,9; rRMSE < 0,2 und NSE > 0,5). Diese Komponente bildet die Grundlage bei der Bezifferung der für die Prozesse an der Erdoberfläche zur Verfügung stehenden Energie. Für die fühlbaren Wärmeströme wurden ebenfalls gute Ergebnisse erzielt, mit NSE von 0,31 und rRMSE von ca. 0,21. Für die residual bestimmte Größe der latenten Wärmeströmung konnte eine insgesamt gute Modellgüte festgestellt werden (R² > 0,6; rRMSE < 0,2 und NSE > 0,5). Dementsprechend gut wurde die tägliche Evapotranspiration modelliert. Hier ergab sich, nach der Interpolation täglicher Werte, eine insgesamt ausreichend gute Modellgüte (R² > 0,5; rRMSE < 0,2 und NSE > 0,4). Dies bestätigt die Ergebnisse vieler Energiebilanzstudien, die lediglich den für die Ableitung der Evapotranspiration maßgebenden Wärmestrom untersuchten. Die Modellergebnisse für den Bodenwärmestrom konnten durch die Entwicklung und Verwendung des neu entwickelten physikalischen Ansatzes von NSE < 0 und rRMSE von ca. 0,57 auf NSE von 0,19 und rRMSE von 0,35 verbessert werden. Dies führt zu einer insgesamt positiven Einschätzung des Verbesserungspotenzials des neu entwickelten Bodenwärmestromansatzes bei der Berechnung der Energiebilanz mit Hilfe von Fernerkundung.
Remote sensing time series is the collection or acquisition of remote sensing data in a
fixed equally spaced time period over a particular area or for the whole world. Near
daily high spatial resolution data is very much needed for remote sensing applications
such as agriculture monitoring, phenology change detection, environmental
monitoring and so on. Remote sensing applications can produce better and accurate
results if they are provided with dense and accurate time series of data. The current
remote sensing satellite architecture is still not capable of providing near daily
or daily high spatial resolution images to fulfill the needs of the above mentioned
remote sensing applications. Limitations in sensors, high development, operational
costs of satellites and presence of clouds blocking the area of observation are some
of the reasons that makes near daily or daily high spatial resolution optical remote
sensing data highly challenging to achieve. With developments in the optical sensor
systems and well planned remote sensing satellite constellations, this condition
can be improved but it comes at a cost. Even then the issue will not be completely
resolved and thus the growing need for high temporal and high spatial resolution
data cannot be fulfilled entirely. Because the data collection process relies on satellites
which are physical system, these can fail unpredictably due to various reasons
and cause a complete loss of observation for a given period of time making a gap
in the time series. Moreover, to observe the long term trend in phenology change
due to rapidly changing environmental conditions, the remote sensing data from
the present is not just sufficient, the data from the past is also important. A better
alternative solution for this issue can be the generation of remote sensing time series
by fusing data from multiple remote sensing satellite which has different spatial and
temporal resolutions. This approach will be effective and efficient. In this method
a high temporal low spatial resolution image from a satellite such as Sentinel-2 can
be fused with a low temporal and high spatial resolution image from a satellite such
as the Sentinel-3 to generate a synthetic high temporal high spatial resolution data.
Remote sensing time series generation by data fusion methods can be applied to
the satellite images captured currently as well as the images captured by the satellites
in the past. This will provide the much needed high temporal and high spatial
resolution images for remote sensing applications. This approach with its simplistic
nature is cost effective and provides the researchers the means to generate the
data needed for their application on their own from the limited source of data available
to them. An efficient data fusion approach in combination with a well planned
satellite constellation can offer a solution which will ensure near daily time series of
remote sensing data with out any gap. The aim of this research work is to develop
an efficient data fusion approaches to achieve dense remote sensing time series.