Refine
Has Fulltext
- yes (10)
Is part of the Bibliography
- yes (10)
Document Type
- Doctoral Thesis (10)
Language
- English (10)
Keywords
- Fernerkundung (7)
- Remote Sensing (4)
- Zeitreihe (3)
- River Basins (2)
- Schnee (2)
- remote sensing (2)
- Alpen (1)
- Alps (1)
- Antarctica (1)
- Antarktis (1)
Institute
Sonstige beteiligte Institutionen
- Deutsches Zentrum für Luft & Raumfahrt (DLR) (1)
- Deutsches Zentrum für Luft- und Raumfahrt (1)
- Deutsches Zentrum für Luft- und Raumfahrt (DLR) (1)
- Lehrstuhl für Fernerkundung der Uni Würzburg, in Kooperation mit dem Deutschen Fernerkundungsdatenzentrum (DFD) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) (1)
Worldwide, cold regions are undergoing significant alterations due to climate change. Snow, the most widely distributed cold region component, is highly sensitive to climate change. At the same time, snow itself profoundly impacts the Earth’s energy budget, biodiversity, and natural hazards, as well as hydropower management, freshwater management, and winter tourism/sports. Large parts of the cold regions in Europe are mountain areas, which are densely populated because of the various ecosystem services and socioeconomic well-being in mountains. At present, severe consequences caused by climate change have been observed in European mountains and their surrounding areas. Yet, large knowledge gaps hinder the development of effective regional and local adaptation strategies. Long-term and evidence-based regional studies are urgently needed to enhance the comprehension of regional responses to climate change.
Earth Observation (EO) provides long-term consistent records of the Earth’s surface. It is a great alternative and/or supplement to conventional in-situ measurements which are usually time-consuming, cost-intensive and logistically demanding, particularly for the poor accessibility of cold regions. With the assistance of EO, land surface dynamics in cold regions can be observed in an objective, repeated, synoptic and consistent way. Thanks to free and open data policies, long-term archives such as Landsat Archive and Sentinel Archive can be accessed free-of-charge. The high- to medium-resolution remote sensing imagery from these freely accessible archives gives EO-based time series datasets the capability to depict snow dynamics in European mountains from the 1980s to the present. In order to compile such a dataset, it is necessary to investigate the spatiotemporal availability of EO data, and develop a spatiotemporally transferable framework from which one can investigate snow dynamics.
Among the available EO image archives, the Landsat Archive has the longest uninterrupted records of the Earth’s land surface. Furthermore, its 30 m spatial resolution fulfils the requirements for snow monitoring in complex terrains. Landsat data can yield a time series of snow dynamics in mountainous areas from 1984 to the present. However, severe Landsat data gaps have occurred across certain regions of Europe. Moreover, the Landsat Level 1 Precision and Terrain (L1TP) data is scarcer (up to 50% less) in high-latitude mountainous areas than in low-latitude mountainous areas. Given the abovementioned facts, the Regional Snowline Elevation (RSE) is selected to characterize the snow dynamics in mountainous areas, as it can handle cloud obstructions in the optical images. In this thesis, I present a five-step framework to derive and densify RSE time series in European mountains, i.e. (1) pre-processing, (2) snow detection, (3) RSE retrieval, (4) time series densification, and (5) Regional Snowline Retreat Curve (RSRC) production.
The results of the intra-annual RSE variations show a uniquely high variation in the beginning of the ablation seasons in the Alpine catchment Tagliamento, mainly toward higher elevation. As for inter-annual variations of RSE, median RSE increases in all selected catchments, with an average speed of around 4.66 m ∙ a−1 (median) and 5.87 m ∙ a−1 (at the beginning of the ablation season). The fastest significant retreat is observed in the catchment Drac (10.66 m ∙ a−1, at the beginning of the ablation season), and the slowest significant retreat is observed in the catchment Uzh (1.74 m ∙ a−1, at the beginning of the ablation season). The increase of RSEs at the beginning of the ablation season is faster than the median RSEs, whose average difference is nearly 1.21 m ∙ a−1, particularly in the catchment Drac (3.72 m ∙ a−1). The results of the RSRCs show a significant rise in RSEs at the beginning of the ablation season, except for the Alpine catchment Alpenrhein and Var, and the Pyrenean catchment Ariege. It indicates that 11.8 and 3.97 degrees Celsius less per year are needed for the regional snowlines to reach the middle point of the RSRC in the Tagliamento and Tysa, respectively. The variation of air temperature is regarded as an example of a potential climate driver in this thesis. The retrieved monthly mean RSEs are highly correlated (mean correlation coefficient "R" ̅ = 0.7) with the monthly temperature anomalies, which are more significant in months with extremely low/high temperature. Another case study that investigates the correlation between river discharges and RSEs is carried out to demonstrate the potential consequences of the derived snowline dynamics. The correlation analysis shows a good correlation between river discharges and RSEs (correlation coefficient, R=0.52).
In this thesis, the developed framework signifies a better understanding of the snow dynamics in mountain areas, as well as their potential triggers and consequences. Nonetheless, an urgent need persists for: (1) validation data to assess long-term snow-related observations based on high-resolution EO data; (2) further studies to reveal interactions between snow and its ambient environment; and (3) regional and local adaptation-strategies coping with climate change. Further studies exploring the above-mentioned research gaps are urgently needed in the future.
As a cradle of ancient Chinese civilization, the Yellow River Basin has a very long human-environment interrelationship, where early anthropogenic activities re- sulted in large scale landscape modifications. Today, the impact of this relationship
has intensified further as the basin plays a vital role for China’s continued economic
development. It is one of the most densely-populated, fastest growing, and most dynamic
regions of China with abundant natural and environmental resources providing a livelihood for almost 190 million people. Triggered by fundamental economic reforms, the
basin has witnessed a spectacular economic boom during the last decades and can be
considered as an exemplary blueprint region for contemporary dynamic Global Change
processes occurring throughout the country, which is currently transitioning from an
agrarian-dominated economy into a modern urbanized society. However, this resourcesdemanding growth has led to profound land use changes with adverse effects on the Yellow
River social-ecological systems, where complex challenges arise threatening a long-term
sustainable development.
Consistent and continuous remote sensing-based monitoring of recent and past land
cover and land use change is a fundamental requirement to mitigate the adverse impacts
of Global Change processes. Nowadays, technical advancement and the multitude of
available satellite sensors, in combination with the opening of data archives, allow the
creation of new research perspectives in regional land cover applications over heterogeneous landscapes at large spatial scales. Despite the urgent need to better understand the
prevailing dynamics and underlying factors influencing the current processes, detailed
regional specific land cover data and change information are surprisingly absent for this
region.
In view of the noted research gaps and contemporary developments, three major objectives are defined in this thesis. First (i), the current and most pressing social-ecological
challenges are elaborated and policy and management instruments towards more sustainability are discussed. Second (ii), this thesis provides new and improved insights on
the current land cover state and dynamics of the entire Yellow River Basin. Finally (iii),
the most dominant processes related to mining, agriculture, forest, and urban dynamics
are determined on finer spatial and temporal scales.
The complex and manifold problems and challenges that result from long-term abuse
of the water and land resources in the basin have been underpinned by policy choices,
cultural attitude, and institutions that have evolved over centuries in China. The tremendous economic growth that has been mainly achieved by extracting water and exploiting
land resources in a rigorous, but unsustainable manner, might not only offset the economic benefits, but could also foster social unrest. Since the early emergence of the first Chinese dynasties, flooding was considered historically as a primary issue in river management and major achievements have been made to tame the wild nature of the Yellow
River. Whereas flooding is therefore largely now under control, new environmental and
social problems have evolved, including soil and water pollution, ecological degradation,
biodiversity decline, and food security, all being further aggravated by anthropogenic
climate change. To resolve the contemporary and complex challenges, many individual
environmental laws and regulations have been enacted by various Chinese ministries.
However, these policies often pursue different, often contradictory goals, are too general
to tackle specific problems and are usually implemented by a strong top-down approach.
Recently, more flexible economic and market-based incentives (pricing, tradable permits,
investments) have been successfully adopted, which are specifically tailored to the respective needs, shifting now away from the pure command and regulating instruments.
One way towards a more holistic and integrated river basin management could be the
establishment of a common platform (e.g. a Geographical Information System) for data
handling and sharing, possibly operated by the Yellow River Basin Conservancy Commission (YRCC), where available spatial data, statistical information and in-situ measures
are coalesced, on which sustainable decision-making could be based. So far, the collected
data is hardly accessible, fragmented, inconsistent, or outdated.
The first step to address the absence and lack of consistent and spatially up-to-date
information for the entire basin capturing the heterogeneous landscape conditions was
taken up in this thesis. Land cover characteristics and dynamics were derived from
the last decade for the years 2003 and 2013, based on optical medium-resolution hightemporal MODIS Normalized Differenced Vegetation Index (NDVI) time series at 250 m.
To minimize the inherent influence of atmospheric and geometric interferences found in
raw high temporal data, the applied adaptive Savitzky-Golay filter successfully smoothed
the time series and substantially reduced noise. Based on the smoothed time series
data, a large variety of intra-annual phenology metrics as well as spectral and multispectral annual statistics were derived, which served as input variables for random
forest (RF) classifiers. High quality reference data sets were derived from very high
resolution imagery for each year independently of which 70 % trained the RF models. The
accuracy assessments for all regionally specific defined thematic classes were based on the
remaining 30 % reference data split and yielded overall accuracies of 87 % and 84 % for
2003 and 2013, respectively. The first regional adapted Yellow River Land Cover Products
(YRB LC) depict the detail spatial extent and distribution of the current land cover status
and dynamics. The novel products overall differentiate overall 18 land cover and use
classes, including classes of natural vegetation (terrestrial and aquatic), cultivated classes,
mosaic classes, non-vegetated, and artificial classes, which are not presented in previous
land cover studies so far.
Building on this, an extended multi-faceted land cover analysis on the most prominent
land cover change types at finer spatial and temporal scales provides a better and more
detailed picture of the Yellow River Basin dynamics. Precise spatio-temporal products
about mining, agriculture, forest, and urban areas were examined from long-trem Landsat
satellite time series monitored at annual scales to capture the rapid rate of change in four
selected focus regions. All archived Landsat images between 2000 and 2015 were used to
derive spatially continuous spectral-temporal, multi-spectral, and textural metrics. For
each thematic region and year RF models were built, trained and tested based on a stablepixels reference data set. The automated adaptive signature (AASG) algorithm identifies those pixels that did not change between the investigated time periods to generate a
mono-temporal reference stable-pixels data set to keep manual sampling requirements
to a minimum level. Derived results gained high accuracies ranging from 88 % to 98 %.
Throughout the basin, afforestation on the Central Loess Plateau and urban sprawl are
identified as most prominent drivers of land cover change, whereas agricultural land
remained stable, only showing local small-scale dynamics. Mining operations started in
2004 on the Qinghai-Tibet Plateau, which resulted in a substantial loss of pristine alpine
meadows and wetlands.
In this thesis, a novel and unique regional specific view of current and past land cover
characteristics in a complex and heterogeneous landscape was presented by using a
multi-source remote sensing approach. The delineated products hold great potential for
various model and management applications. They could serve as valuable components
for effective and sustainable land and water management to adapt and mitigate the
predicted consequences of Global Change processes.
West Africa is one of the fastest growing regions in the world with annual population growth rates of more than three percent for several countries. Since the 1950s, West Africa experienced a fivefold increase of inhabitants, from 71 to 353 million people in 2015 and it is expected that the region’s population will continue to grow to almost 800 million people by the year 2050. This strong trend has and will have serious consequences for food security since agricultural productivity is still on a comparatively low level in most countries of West Africa. In order to compensate for this low productivity, an expansion of agricultural areas is rapidly progressing. The mapping and monitoring of agricultural areas in West Africa is a difficult task even on the basis of remote sensing. The small scale extensive farming practices with a low level of agricultural inputs and mechanization make the delineation of cultivated land from other land cover and land use (LULC) types highly challenging. In addition, the frequent cloud coverage in the region considerably decreases the availability of earth observation datasets. For the accurate mapping of agricultural area in West Africa, high temporal as well as spatial resolution is necessary to delineate the small-sized fields and to obtain data from periods where different LULC types are distinguishable. However, such consistent time series are currently not available for West Africa. Thus, a spatio-temporal data fusion framework was developed in this thesis for the generation of high spatial and temporal resolution time series.
Data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) enjoyed increasing popularity during recent years but they have hardly been used for the application on larger scales. In order to make it applicable for this purpose and to increase the input data availability, especially in cloud-prone areas such as West Africa, the ESTARFM framework was developed in this thesis introducing several enhancements. An automatic filling of cloud gaps was included in the framework in order to use even partly cloud-covered Landsat images for the fusion without producing gaps on the output images. In addition, the ESTARFM algorithm was improved to automatically account for regional differences in the heterogeneity of the study region. Further improvements comprise the automation of the time series generation as well as the significant acceleration of the processing speed through parallelization. The performance of the developed ESTARFM framework was tested by fusing an 8-day NDVI time series from Landsat and MODIS data for a focus area of 98,000 km² in the border region between Burkina Faso and Ghana. The results of this test show the capability of the ESTARFM framework to accurately produce high temporal resolution time series while maintaining the spatial detail, even in such a heterogeneous and cloud-prone region.
The successfully tested framework was subsequently applied to generate consistent time series as the basis for the mapping of agricultural area in Burkina Faso for the years 2001, 2007, and 2014. In a first step, high temporal (8-day) and high spatial (30 m) resolution NDVI time series for the entire country and the three years were derived with the ESTARFM framework. More than 500 Landsat scenes and 3000 MODIS scenes were automatically processed for this purpose. From the fused ESTARFM NDVI time series, phenological metrics were extracted and together with the single time steps of NDVI served as input for the delineation of rainfed agricultural areas, irrigated agricultural areas and plantations. The classification was conducted with the random forest algorithm at a 30 m spatial resolution for entire Burkina Faso and the three years 2001, 2007, and 2014. For the training and validation of the classifier, a randomly sampled reference dataset was generated from Google Earth images based on expert knowledge of the region. The overall classification accuracies of 92% (2001), 91% (2007), and 91% (2014) indicate the well-functioning of the developed methodology. The resulting maps show an expansion of agricultural area of 91% from about 61,000 km² in 2001 to 116,900 km² in 2014. While rainfed agricultural areas account for the major part of this increase, irrigated areas and plantations also spread considerably. Especially the expansion of irrigation systems and plantation area can be explained by the promotion through various national and international development projects. The increase of agricultural areas goes in line with the rapid population growth in most of Burkina Faso’s provinces which still had available land resources for an expansion of agricultural area. An analysis of the development of agricultural areas in the vicinity of protected areas highlighted the increased human pressure on these reserves. The protection of the remnant habitats for flora and fauna while at the same time improving food security for a rapidly growing population, are the major challenges for the region in the future.
The developed ESTARFM framework showed great potential beyond its utilization for the mapping of agricultural area. Other large-scale research that requires a sufficiently high temporal and spatial resolution such as the monitoring of land degradation or the investigation of land surface phenology could greatly benefit from the application of this framework.
The Antarctic Ice Sheet stores ~91% of the global ice volume which is equivalent to a sea-level rise of 58.3 meters. Recent disintegration events of ice shelves and retreating glaciers along the Antarctic Peninsula and West Antarctica indicate the current vulnerable state of the Antarctic Ice Sheet. Glacier tongues and ice shelves create a safety band around Antarctica with buttressing effects on ice discharge. Current decreases in glacier and ice shelf extent reduce the effective buttressing forces and increase ice discharge of grounded ice. The consequence is a higher contribution to sea-level rise from the Antarctic Ice Sheet. So far, it is unresolved which proportion of Antarctic glacier retreat can be attributed to climate change and which part to the natural cycle of growth and decay in the lifetime of a glacier. The quantitative assessment of the magnitude, spatial extent, distribution, and dynamics of circum-Antarctic glacier and ice shelf retreat is of utmost importance to monitor Antarctica’s weakening safety band. In remote areas like Antarctica, earth observation provides optimal properties for large-scale mapping and monitoring of glaciers and ice shelves. Nowadays, the variety of available satellite sensors, technical advancements regarding spatial resolution and revisit times, as well as open satellite data archives create an ideal basis for monitoring calving front change. A systematic review conducted within this thesis revealed major gaps in the availability of glacier and ice shelf front position measurements despite the improved satellite data availability. The previously limited availability of satellite imagery and the time-consuming manual delineation of calving fronts did neither allow a circum-Antarctic assessment of glacier retreat nor the assessment of intra-annual changes in glacier front position. To advance the understanding of Antarctic glacier front change, this thesis presents a novel automated approach for calving front extraction and explores drivers of glacier retreat.
A comprehensive review of existing methods for glacier front extraction ascertained the lack of a fully automatic approach for large-scale monitoring of Antarctic calving fronts using radar imagery. Similar backscatter characteristics of different ice types, seasonally changing backscatter values, multi-year sea ice, and mélange made it challenging to implement an automated approach with traditional image processing techniques. Therefore, the present abundance of satellite data is best exploited by integrating recent developments in big data and artificial intelligence (AI) research to derive circum-Antarctic calving front dynamics. In the context of this thesis, the novel AI-based framework “AntarcticLINES” (Antarctic Glacier and Ice Shelf Front Time Series) was created which provides a fully automated processing chain for calving front extraction from Sentinel-1 imagery. Open access Sentinel-1 radar imagery is an ideal data source for monitoring current and future changes in the Antarctic coastline with revisit times of less than six days and all-weather imaging capabilities. The developed processing chain includes the pre-processing of dual-polarized Sentinel-1 imagery for machine learning applications. 38 Sentinel-1 scenes were used to train the deep learning architecture U-Net for image segmentation. The trained weights of the neural network can be used to segment Sentinel-1 scenes into land ice and ocean. Additional post-processing ensures even more accurate results by including morphological filtering before extracting the final coastline. A comprehensive accuracy assessment has proven the correct extraction of the coastline. On average, the automatically extracted coastline deviates by 2-3 pixels (93 m) from a manual delineation. This accuracy is in range with deviations between manually delineated coastlines from different experts.
For the first time, the fully automated framework AntarcticLINES enabled the extraction of intra-annual glacier front fluctuations to assess seasonal variations in calving front change. Thereby, for example, an increased calving frequency of Pine Island Glacier and a beginning disintegration of Glenzer Glacier were revealed. Besides, the extraction of the entire Antarctic coastline for 2018 highlighted the large-scale applicability of the developed approach. Accurate results for entire Antarctica were derived except for the Western Antarctic Peninsula where training imagery was not sufficient and should be included in future studies.
Furthermore, this dissertation presents an unprecedented record of circum-Antarctic calving front change over the last two decades. The newly extracted coastline for 2018 was compared to previous coastline products from 2009 and 1997. This revealed that the Antarctic Ice Sheet shrank 29,618±1193 km2 in extent between 1997-2008 and gained an area of 7,108±1029 km2 between 2009-2018. Glacier retreat concentrated along the Antarctic Peninsula and West Antarctica. The only East Antarctic coastal sector primarily experiencing calving front retreat was Wilkes Land in 2009-2018. Finally, potential drivers of circum-Antarctic glacier retreat were identified by combining data on glacier front change with changes in climate variables. It was found that strengthening westerlies, snowmelt, rising sea surface temperatures, and decreasing sea ice cover forced glacier retreat over the last two decades. Relative changes in mean air temperature could not be identified as a driver for glacier retreat and further investigations on extreme events in air temperature are necessary to assess the effect of atmospheric forcing on frontal retreat. The strengthening of all identified drivers was closely connected to positive phases of the Southern Annular Mode (SAM). With increasing greenhouse gases and ozone depletion, positive phases of SAM will occur more often and force glacier retreat even further in the future.
Within this thesis, a comprehensive review on existing Antarctic glacier and ice shelf front studies was conducted revealing major gaps in Antarctic calving front records. Therefore, a fully automated processing chain for glacier and ice shelf front extraction was implemented to track circum-Antarctic calving front fluctuations on an intra-annual basis. The large-scale applicability was certified by presenting two decades of circum-Antarctic calving front change. In combination with climate variables, drivers of recent glacier retreat were identified. In the future, the presented framework AntarcticLINES will greatly contribute to the constant monitoring of the Antarctic coastline under the pressure of a changing climate.
The expansion of renewable energies is being driven by the gradual phaseout of fossil fuels in order to reduce greenhouse gas emissions, the steadily increasing demand for energy and, more recently, by geopolitical events. The offshore wind energy sector is on the verge of a massive expansion in Europe, the United Kingdom, China, but also in the USA, South Korea and Vietnam. Accordingly, the largest marine infrastructure projects to date will be carried out in the upcoming decades, with thousands of offshore wind turbines being installed. In order to accompany this process globally and to provide a database for research, development and monitoring, this dissertation presents a deep learning-based approach for object detection that enables the derivation of spatiotemporal developments of offshore wind energy infrastructures from satellite-based radar data of the Sentinel-1 mission.
For training the deep learning models for offshore wind energy infrastructure detection, an approach is presented that makes it possible to synthetically generate remote sensing data and the necessary annotation for the supervised deep learning process. In this synthetic data generation process, expert knowledge about image content and sensor acquisition techniques is made machine-readable. Finally, extensive and highly variable training data sets are generated from this knowledge representation, with which deep learning models can learn to detect objects in real-world satellite data.
The method for the synthetic generation of training data based on expert knowledge offers great potential for deep learning in Earth observation. Applications of deep learning based methods can be developed and tested faster with this procedure. Furthermore, the synthetically generated and thus controllable training data offer the possibility to interpret the learning process of the optimised deep learning models.
The method developed in this dissertation to create synthetic remote sensing training data was finally used to optimise deep learning models for the global detection of offshore wind energy infrastructure. For this purpose, images of the entire global coastline from ESA's Sentinel-1 radar mission were evaluated. The derived data set includes over 9,941 objects, which distinguish offshore wind turbines, transformer stations and offshore wind energy infrastructures under construction from each other. In addition to this spatial detection, a quarterly time series from July 2016 to June 2021 was derived for all objects. This time series reveals the start of construction, the construction phase and the time of completion with subsequent operation for each object.
The derived offshore wind energy infrastructure data set provides the basis for an analysis of the development of the offshore wind energy sector from July 2016 to June 2021. For this analysis, further attributes of the detected offshore wind turbines were derived. The most important of these are the height and installed capacity of a turbine. The turbine height was calculated by a radargrammetric analysis of the previously detected Sentinel-1 signal and then used to statistically model the installed capacity. The results show that in June 2021, 8,885 offshore wind turbines with a total capacity of 40.6 GW were installed worldwide. The largest installed capacities are in the EU (15.2 GW), China (14.1 GW) and the United Kingdom (10.7 GW). From July 2016 to June 2021, China has expanded 13 GW of offshore wind energy infrastructure. The EU has installed 8 GW and the UK 5.8 GW of offshore wind energy infrastructure in the same period. This temporal analysis shows that China was the main driver of the expansion of the offshore wind energy sector in the period under investigation.
The derived data set for the description of the offshore wind energy sector was made publicly available. It is thus freely accessible to all decision-makers and stakeholders involved in the development of offshore wind energy projects. Especially in the scientific context, it serves as a database that enables a wide range of investigations. Research questions regarding offshore wind turbines themselves as well as the influence of the expansion in the coming decades can be investigated. This supports the imminent and urgently needed expansion of offshore wind energy in order to promote sustainable expansion in addition to the expansion targets that have been set.
Permafrost degradation is observed all over the world as a consequence of climate change and the associated Arctic amplification, which has severe implications for the environment. Landslides, increased rates of surface deformation, rising likelihood of infrastructure damage, amplified coastal erosion rates, and the potential turnover of permafrost from a carbon sink to a carbon source are thereby exemplary implications linked to the thawing of frozen ground material. In this context, satellite earth observation is a potent tool for the identification and continuous monitoring of relevant processes and features on a cheap, long-term, spatially explicit, and operational basis as well as up to a circumpolar scale.
A total of 325 articles published in 30 different international journals during the past two decades were investigated on the basis of studied environmental foci, remote sensing platforms, sensor combinations, applied spatio-temporal resolutions, and study locations in an extensive review on past achievements, current trends, as well as future potentials and challenges of satellite earth observation for permafrost related analyses. The development of analysed environmental subjects, utilized sensors and platforms, and the number of annually published articles over time are addressed in detail. Studies linked to atmospheric features and processes, such as the release of greenhouse gas emissions, appear to be strongly under-represented. Investigations on the spatial distribution of study locations revealed distinct study clusters across the Arctic. At the same time, large sections of the continuous permafrost domain are only poorly covered and remain to be investigated in detail. A general trend towards increasing attention in satellite earth observation of permafrost and related processes and features was observed. The overall amount of published articles hereby more than doubled since the year 2015. New sources of satellite data, such as the Sentinel satellites and the Methane Remote Sensing LiDAR Mission (Merlin), as well as novel methodological approaches, such as data fusion and deep learning, will thereby likely improve our understanding of the thermal state and distribution of permafrost, and the effects of its degradation. Furthermore, cloud-based big data processing platforms (e.g. Google Earth Engine (GEE)) will further enable sophisticated and long-term analyses on increasingly larger scales and at high spatial resolutions.
In this thesis, a specific focus was put on Arctic permafrost coasts, which feature increasing vulnerability to environmental parameters, such as the thawing of frozen ground, and are therefore associated with amplified erosion rates. In particular, a novel monitoring framework for quantifying Arctic coastal erosion rates within the permafrost domain at high spatial resolution and on a circum-Arctic scale is presented within this thesis. Challenging illumination conditions and frequent cloud cover restrict the applicability of optical satellite imagery in Arctic regions. In order to overcome these limitations, Synthetic Aperture RADAR (SAR) data derived from Sentinel-1 (S1), which is largely independent from sun illumination and weather conditions, was utilized. Annual SAR composites covering the months June–September were combined with a Deep Learning (DL) framework and a Change Vector Analysis (CVA) approach to generate both a high-quality and circum-Arctic coastline product as well as a coastal change product that highlights areas of erosion and build-up. Annual composites in the form of standard deviation (sd) and median backscatter were computed and used as inputs for both the DL framework and the CVA coastal change quantification. The final DL-based coastline product covered a total of 161,600 km of Arctic coastline and featured a median accuracy of ±6.3 m to the manually digitized reference data. Annual coastal change quantification between 2017–2021 indicated erosion rates of up to 67 m per year for some areas based on 400 m coastal segments. In total, 12.24% of the investigated coastline featured an average erosion rate of 3.8 m per year, which corresponds to 17.83 km2 of annually eroded land area. Multiple quality layers associated to both products, the generated DL-coastline and the coastal change rates, are provided on a pixel basis to further assess the accuracy and applicability of the proposed data, methods, and products.
Lastly, the extracted circum-Arctic erosion rates were utilized as a basis in an experimental framework for estimating the amount of permafrost and carbon loss as a result of eroding permafrost coastlines. Information on permafrost fraction, Active Layer Thickness (ALT), soil carbon content, and surface elevation were thereby combined with the aforementioned erosion rates. While the proposed experimental framework provides a valuable outline for quantifying the volume loss of frozen ground and carbon release, extensive validation of the utilized environmental products and resulting volume loss numbers based on 200 m segments are necessary. Furthermore, data of higher spatial resolution and information of carbon content for deeper soil depths are required for more accurate estimates.
Grasslands shape many landscapes of the earth as they cover about one-third of its surface. They are home and provide livelihood for billions of people and are mainly used as source of forage for animals. However, grasslands fulfill many additional ecosystem functions next to fodder production, such as storage of carbon, water filtration, provision of habitats and cultural values. They play a role in climate change (mitigation) and in preserving biodiversity and ecosystem functions on a global scale. The degree to what these ecosystem functions are present within grassland ecosystems is largely determined by the management. Individual management practices and the use intensity influence the species composition as well as functions, like carbon storage, while higher use intensities (e.g. high mowing frequencies) usually show a negative impact. Especially in Central European countries, like in Germany, the determining influence of grassland management on its physiognomy and ecosystem functions leads to a large variability and small-scale alternations of grassland parcels. Large-scale information on the management and use intensity of grasslands is not available. Consequently, estimations of grassland ecosystem functions are challenging which, however, would be required for large-scale assessments of the status of grassland ecosystems and optimized management plans for the future. The topic of this thesis tackles this gap by investigating the major grassland management practice in Germany, which is mowing, for multiple years, in high spatial resolution
and on a national scale.
Earth Observation (EO) has the advantage of providing information of the earth’s surface on multi-temporal time steps. An extensive literature review on the use of EO for grassland management and production analyses, which was part of this thesis, showed that in particular research on grasslands consisting of small parcels with a large variety of management and use intensity, like common in Central Europe, is underrepresented. Especially
the launch of the Sentinel satellites in the recent past now enables the analyses of such grasslands due to their high spatial and temporal resolution. The literature review specifically on the investigation of grassland mowing events revealed that most previous studies focused on small study areas, were exploratory, only used one sensor type and/or lacked a reference data set with a complete range of management options.
Within this thesis a novel framework to detect grassland mowing events over large areas is presented which was applied and validated for the entire area of Germany for multiple years (2018–2021). The potential of both sensor types, optical (Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel-1) was investigated regarding grassland mowing event detection. Eight EO parameters were investigated, namely the Enhanced Vegetation Index (EVI), the backscatter intensity and the interferometric (InSAR) temporal coherence for both available polarization modes (VV and VH), and the polarimetric (PolSAR) decomposition parameters Entropy, K0 and K1. An extensive reference data set was generated based on daily images of webcams distributed in Germany which resulted in mowing information
for grasslands with the entire possible range of mowing frequencies – from one to six in Germany – and in 1475 reference mowing events for the four years of interest.
For the first time a observation-driven mowing detection approach including data from Sentinel-2 and Sentinel-1 and combining the two was developed, applied and validated on large scale. Based on a subset of the reference data (13 grassland parcels with 44 mowing events) from 2019 the EO parameters were investigated and the detection algorithm
developed and parameterized. This analysis showed that a threshold-based change detection approach based on EVI captured grassland mowing events best, which only failed during periods of clouds. All SAR-based parameters showed a less consistent behavior to mowing events, with PolSAR Entropy and InSAR Coherence VH, however, revealing the
highest potential among them. A second, combined approach based on EVI and a SARbased parameter was developed and tested for PolSAR Entropy and InSAR VH. To avoid additional false positive detections during periods in which mowing events are anyhow reliably detected using optical data, the SAR-based mowing detection was only initiated
during long gaps within the optical time series (< 25 days). Application and validation of
these approaches in a focus region revealed that only using EVI leads to the highest accuracies (F1-Score = 0.65) as combining this approach with SAR-based detection led to a strong increase in falsely detected mowing events resulting in a decrease of accuracies (EVI + PolSAR ENT F1-Score = 0.61; EVI + InSAR COH F1-Score = 0.61).
The mowing detection algorithm based on EVI was applied for the entire area of Germany for the years 2018-2021. It was revealed that the largest share of grasslands with high mowing frequencies (at least four mowing events) can be found in southern/south-eastern Germany. Extensively used grassland (mown up to two times) is distributed within the entire country with larger shares in the center and north-eastern parts of Germany. These patterns stay constant in general, but small fluctuations between the years are visible. Early mown grasslands can be found in southern/south-eastern Germany – in line with high mowing frequency areas – but also in central-western parts. The years 2019 and 2020 revealed higher accuracies based on the 1475 mowing events of the multi-annual validation data set
(F1-Scores of 0.64 and 0.63), 2018 and 2021 lower ones (F1-Score of 0.52 and 0.50).
Based on this new, unprecedented data set, potential influencing factors on the mowing dynamics were investigated. Therefore, climate, topography, soil data and information on conservation schemes were related to mowing dynamics for the year 2020, which showed a high number of valid observations and detection accuracy. It was revealed that there are no strong linear relationships between the mowing frequency or the timing of the first mowing event and the investigated variables. However, it was found that for intensive grassland usage certain climatic and topographic conditions have to be fulfilled, while extensive grasslands appear on the entire spectrum of these variables. Further, higher mowing frequencies occur on soils with influence of ground water and lower mowing frequencies in protected areas. These results show the complex interplay between grassland mowing dynamics and external influences and highlight the challenges of policies aiming to protect grassland ecosystem functions and their need to be adapted to regional circumstances.
The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument.
In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed.
To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere.
In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area.
These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions.
With accelerating global climate change, the Antarctic Ice Sheet is exposed to increasing ice dynamic change. During 1992 and 2017, Antarctica contributed ~7.6 mm to global sea-level-rise mainly due to ocean thermal forcing along West Antarctica and atmospheric warming along the Antarctic Peninsula (API). Together, these processes caused the progressive retreat of glaciers and ice shelves and weakened their efficient buttressing force causing widespread ice flow accelerations. Holding ~91% of the global ice mass and 57.3 m of sea-level-equivalent, the Antarctic Ice Sheet is by far the largest potential contributor to future sea-level-rise.
Despite the improved understanding of Antarctic ice dynamics, the future of Antarctica remains difficult to predict with its contribution to global sea-level-rise representing the largest uncertainty in current projections. Given that recent studies point towards atmospheric warming and melt intensification to become a dominant driver for future Antarctic ice mass loss, the monitoring of supraglacial lakes and their impacts on ice dynamics is of utmost importance. In this regard, recent progress in Earth Observation provides an abundance of high-resolution optical and Synthetic Aperture Radar (SAR) satellite data at unprecedented spatial and temporal coverage and greatly supports the monitoring of the Antarctic continent where ground-based mapping efforts are difficult to perform. As an automated mapping technique for supraglacial lake extent delineation in optical and SAR satellite imagery as well as a pan-Antarctic inventory of Antarctic supraglacial lakes at high spatial and temporal resolution is entirely missing, this thesis aims to advance the understanding of Antarctic surface hydrology through exploitation of spaceborne remote sensing.
In particular, a detailed literature review on spaceborne remote sensing of Antarctic supraglacial lakes identified several research gaps including the lack of (1) an automated mapping technique for optical or SAR satellite data that is transferable in space and time, (2) high-resolution supraglacial lake extent mappings at intra-annual and inter-annual temporal resolution and (3) large-scale mapping efforts across the entire Antarctic continent. In addition, past method developments were found to be restricted to purely visual, manual or semi-automated mapping techniques hindering their application to multi-temporal satellite imagery at large-scale. In this context, the development of automated mapping techniques was mainly limited by sensor-specific characteristics including the similar appearance of supraglacial lakes and other ice sheet surface features in optical or SAR data, the varying temporal signature of supraglacial lakes throughout the year as well as effects such as speckle noise and wind roughening in SAR data or cloud coverage in optical data. To overcome these limitations, this thesis exploits methods from artificial intelligence and big data processing for development of an automated processing chain for supraglacial lake extent delineation in Sentinel-1 SAR and optical Sentinel-2 satellite imagery. The combination of both sensor types enabled to capture both surface and subsurface lakes as well as to acquire data during cloud cover or wind roughening of lakes. For Sentinel-1, a deep convolutional neural network based on residual U-Net was trained on the basis of 21,200 labeled Sentinel-1 SAR image patches covering 13 Antarctic regions. Similarly, optical Sentinel-2 data were collected over 14 Antarctic regions and used for training of a Random Forest classifier. Optical and SAR classification products were combined through decision-level fusion at bi-weekly temporal scale and unprecedented 10 m spatial resolution. Finally, the method was implemented as part of DLR’s High-Performance Computing infrastructure allowing for an automated processing of large amounts of data including all required pre- and postprocessing steps. The results of an accuracy assessment over independent test scenes highlighted the functionality of the classifiers returning accuracies of 93% and 95% for supraglacial lakes in Sentinel-1 and Sentinel-2 satellite imagery, respectively.
Exploiting the full archive of Sentinel-1 and Sentinel-2, the developed framework for the first time enabled the monitoring of seasonal characteristics of Antarctic supraglacial lakes over six major ice shelves in 2015-2021. In particular, the results for API ice shelves revealed low lake coverage during 2015-2018 and particularly high lake coverage during the 2019-2020 and 2020-2021 melting seasons. On the contrary, East Antarctic ice shelves were characterized by high lake coverage during 2016-2019 and
extremely low lake coverage during the 2020-2021 melting season. Over all six investigated ice shelves, the development of drainage systems was revealed highlighting an increased risk for ice shelf instability. Through statistical correlation analysis with climate data at varying time lags as well as annual data on Southern Hemisphere atmospheric modes, environmental drivers for meltwater ponding were revealed. In addition, the influence of the local glaciological setting was investigated through computation of annual recurrence times of lakes. Over both ice sheet regions, the complex interplay between local, regional and large-scale environmental drivers was found to control supraglacial lake formation despite local to regional discrepancies, as revealed through pixel-based correlation analysis. Local control factors included the ice surface topography, the ice shelf geometry, the presence of low-albedo features as well as a reduced firn air content and were found to exert strong control on lake distribution. On the other hand, regional controls on lake evolution were revealed to be the amount of incoming solar radiation, air temperature and wind occurrence. While foehn winds were found to dictate lake evolution over the API, katabatic winds influenced lake ponding in East Antarctica. Furthermore, the regional near-surface climate was shown to be driven by large-scale atmospheric modes and teleconnections with the tropics. Overall, the results highlight that similar driving factors control supraglacial lake formation on the API and EAIS pointing towards their transferability to other Antarctic regions.
The seasonal snow cover in the European Alps plays a crucial role in the region's climate, ecology, and economy. It affects the local climate through its high albedo, protects permafrost, provides habitats, and acts as a water reservoir that feeds European rivers. However, these functions are threatened by climate change. Analyzing snow cover dynamics is essential to predict future developments and assess related ecological and economic impacts.
This study explores the potential of long Earth Observation (EO) time series for modeling and predicting the snow line elevation (SLE) in the Alps. Based on approximately 15,000 Landsat satellite images, SLE time series were generated for the years 1985 to 2022. Various univariate forecasting models were evaluated, with the best results achieved by Random Forests, Telescope, and Seasonal ARIMA. A newly developed approach combines the best models into a robust ensemble, achieving an average Nash-Sutcliffe efficiency (NSE) of 0.8 in catchments with strong seasonal signals.
Forecasts for 2030 indicate significant upward shifts in the SLE, particularly in the Western and Southern Alps. Given the variability in results, a multivariate modeling approach using climate variables is recommended to improve prediction accuracy. This study lays the groundwork for future models that could potentially project SLE dynamics through the end of the 21st century under various climate scenarios, which is highly relevant for climate policy in the Alpine region.