Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Doctoral Thesis (6)
Language
- English (6)
Keywords
- MYC (3)
- Cancer (2)
- Transcription (2)
- Transkription <Genetik> (2)
- B-MYB (1)
- Chromatin (1)
- DSIF (1)
- Degradation (1)
- Fructosebisphosphat-Aldolase (1)
- G2/M genes (1)
Expression of the MYC oncoprotein, which binds the DNA at promoters of most transcribed genes, is controlled by growth factors in non-tumor cells, thus stimulating cell growth and proliferation.
Here in this thesis, it is shown that MYC interacts with SPT5, a subunit of the RNA polymerase II (Pol II) elongation factor DSIF. MYC recruits SPT5 to promoters of genes and is required for its association with Pol II. The transfer of SPT5 is mediated by CDK7 activity on TFIIE, which evicts it from Pol II and allows SPT5 to bind Pol II.
MYC is required for fast and processive transcription elongation, consistent with known functions of SPT5 in yeast. In addition, MYC increases the directionality of promoters by stimulating sense transcription and by suppressing the synthesis of antisense transcripts.
The results presented in this thesis suggest that MYC globally controls the productive assembly of Pol II with general elongation factors to form processive elongation complexes in response to growth-factor stimulation of non-tumour cells. However, MYC is found to be overexpressed in many tumours, and is required for their development and progression.
In this thesis it was found that, unexpectedly, such overexpression of MYC does not further enhance transcription but rather brings about squelching of SPT5. This reduces the processivity of Pol II on selected set of genes that are known to be repressed by MYC, leading to a decrease in growth-suppressive gene transcription and uncontrolled tumour growth
Cellular growth and proliferation are among the most important processes for cells and
organisms. One of the major determinants of these processes is the amount of proteins
and consequently also the amount of ribosomes. Their synthesis involves several hundred
proteins and four different ribosomal RNA species, is highly coordinated and very
energy-demanding. However, the molecular mechanims of transcriptional regulation of
the protein-coding genes involved, is only poorly understood in mammals.
In this thesis, unbiased genome-wide knockout reporter screens were performed, aiming
to identify previously unknown transcriptional regulators of ribosome biogenesis
factors (RiBis), which are important for the assembly and maturation of ribosomes,
and ribosomal proteins (RPs), which are ribosomal components themself. With that
approach and follow-up (validation) experiments, ALDOA and RBM8A among others,
could be identified as regulators of ribosome biogenesis.
Depletion of the glycolytic enzyme ALDOA led to a downregulation of RiBi- and RPpromoter
driven reporters on protein and transcript level, as well as to a downregulation
of ribosome biogenesis gene transcripts and of mRNAs of other genes important for
proliferation.
Reducing the amount of the exon junction complex protein RBM8A, led to a more prominent
downregulation of one of the fluorescent reporters, but this regulation was independent
of the promoter driving the expression of the reporter. However, acute protein
depletion experiments in combination with nascent RNA sequencing (4sU-Seq)
revealed, that mainly cytosolic ribosomal proteins (CRPs) were downregulated upon
acute RBM8A withdrawal. ChIP experiments showed RBM8A binding to promoters of
RP genes, but also to other chromatin regions. Total POL II or elongating and initiating
POL II levels were not altered upon acute RBM8A depletion.
These data provide a starting point for further research on the mechanisms of transcriptional
regulation of RP and RiBi genes in mammals.
The oncogene MYC is deregulated and overexpressed in a high variety of human
cancers and is considered an important driver in tumorigenesis. The MYC protein
binds to virtually all active promoters of genes which are also bound by the RNA
Polymerase II (RNAPII). This results in the assumption that MYC is a transcription
factor regulating gene expression. The effects of gene expression are weak and often
differ depending on the tumor entities or MYC levels. These observations could
argue that the oncogene MYC has additional functions independent of altering gene
expression. In relation to this, the high diversity of interaction partners might be
important. One of them is the RNAPII associated Factor I complex (PAF1c).
In this study, direct interaction between PAF1c and MYC was confirmed in an
in-vitro pulldown assay. ChIP sequencing analyses revealed that knockdown of PAF1c
components resulted in reduced MYC occupancy at active promoters. Depletion
or activation as well as overexpression of MYC led to reduced or enhanced global
occupancy of PAF1c in the body of active genes, arguing that MYC and PAF1c
bind cooperatively to chromatin. Upon PAF1c knockdown cell proliferation was
reduced and additionally resulted in an attenuation of activation or repression of
MYC-regulated genes. Interestingly, knockdown of PAF1c components caused an
accumulation in S-phase of cells bearing oncogenic MYC levels. Remarkably, enhanced
DNA damage, measured by elevated gH2AX and pKAP1 protein levels, was observed
in those cells and this DNA damage occurs specifically during DNA synthesis.
Strikingly, MYC is involved in double strand break repair in a PAF1c-dependent
manner at oncogenic MYC levels.
Collectively the data show that the transfer of PAF1c from MYC onto the RNAPII
couples the transcriptional elongation with double strand break repair to maintain
the genomic integrity in MYC-driven tumor cells.
The transcription factor MYC is a onco-protein, found to be deregulated in many human cancers. High MYC levels correlate with an aggressive tumor outcome and poor survival rates. Despite MYC being discovered as an oncogene already in the 1970s, how MYC regulates transcription of its target genes, which are involved in cellular growth and proliferation, is not fully understood yet.
In this study, the question how MYC influences factors interacting with the RNA polymerase II ensuring productive transcription of its target genes was addressed using quantitative mass spectrometry. By comparing the interactome of RNA polymerase II under varying MYC levels, several potential factors involved in transcriptional elongation were identified. Furthermore, the question which of those factors interact with MYC was answered by employing quantitative mass spectrometry of MYC itself. Thereby, the direct interaction of MYC with the transcription elongation factor SPT5, a subunit of the DRB-sensitivity inducing factor, was discovered and analyzed in greater detail. SPT5 was shown to be recruited to chromatin by MYC. In addition, the interaction site of MYC on SPT5 was narrowed down to its evolutionary conserved NGN-domain, which is the known binding site for SPT4, the earlier characterized second subunit of the DRB-sensitivity inducing factor. This finding suggests a model in which MYC and SPT4 compete for binding the NGN-domain of SPT5.
Investigations of the SPT5-interacting region on MYC showed binding of SPT5 to MYC’s N-terminus including MYC-boxes 0, I and II.
In order to analyze proteins interacting specifically with the N-terminal region of MYC, a truncated MYC-mutant was used for quantitative mass spectrometric analysis uncovering reduced binding for several proteins including the well-known interactor TRRAP and TRRAP-associated complexes.
Summarized, ...
Various types of cancer involve aberrant cell cycle regulation. Among the pathways responsible for tumor growth, the YAP oncogene, a key downstream effector of the Hippo pathway, is responsible for oncogenic processes including cell proliferation, and metastasis by controlling the expression of cell cycle genes. In turn, the MMB multiprotein complex (which is formed when B-MYB binds to the MuvB core) is a master regulator of mitotic gene expression, which has also been associated with cancer. Previously, our laboratory identified a novel crosstalk between the MMB-complex and YAP. By binding to enhancers of MMB target genes and promoting B-MYB binding to promoters, YAP and MMB co-regulate a set of mitotic and cytokinetic target genes which promote cell proliferation. This doctoral thesis addresses the mechanisms of YAP and MMB mediated transcription, and it characterizes the role of YAP regulated enhancers in transcription of cell cycle genes.
The results reported in this thesis indicate that expression of constitutively active, oncogenic YAP5SA leads to widespread changes in chromatin accessibility in untransformed human MCF10A cells. ATAC-seq identified that newly accessible and active regions include YAP-bound enhancers, while the MMB-bound promoters were found to be already accessible and remain open during YAP induction. By means of CRISPR-interference (CRISPRi) and chromatin immuniprecipitation (ChIP), we identified a role of YAP-bound enhancers in recruitment of CDK7 to MMB-regulated promoters and in RNA Pol II driven transcriptional initiation and elongation of G2/M genes. Moreover, by interfering with the YAP-B-MYB protein interaction, we can show that binding of YAP to B-MYB is also critical for the initiation of transcription at MMB-regulated genes. Unexpectedly, overexpression of YAP5SA also leads to less accessible chromatin regions or chromatin closing. Motif analysis revealed that the newly closed regions contain binding motifs for the p53 family of transcription factors. Interestingly, chromatin closing by YAP is linked to the reduced expression and loss of chromatin-binding of the p53 family member Np63. Furthermore, I demonstrate that downregulation of Np63 following expression of YAP is a key step in driving cellular migration.
Together, the findings of this thesis provide insights into the role of YAP in the chromatin changes that contribute to the oncogenic activities of YAP. The overexpression of YAP5SA not only leads to the opening of chromatin at YAP-bound enhancers which together with the MMB complex stimulate the expression of G2/M genes, but also promotes the closing of chromatin at ∆Np63 -bound regions in order to lead to cell migration.
The hallmark oncoprotein Myc is a major driver of tumorigenesis in various human cancer entities. However, Myc’s structural features make it challenging to develop small molecules against it. A promising strategy to indirectly inhibit the function of Myc is by targeting its interactors. Many Myc-interacting proteins have reported scaffolding functions which are difficult to target using conventional occupancy- driven inhibitors. Thus, in this thesis, the proteolysis targeting chimera (PROTAC) approach was used to target two oncoproteins interacting with Myc which promote the oncogenicity of Myc, Aurora-A and WDR5. PROTACs are bifunctional small molecules that bind to the target protein with one ligand and recruit a cellular E3- ligase with the other ligand to induce target degradation via the ubiquitin- proteasome system. So far, the most widely used E3-ligases for PROTAC development are Cereblon (CRBN) and von Hippel–Lindau tumor suppressor (VHL). Furthermore, there are cases of incompatibility between some E3-ligases and proteins to bring about degradation. Hence there is a need to explore new E3- ligases and a demand for a tool to predict degradative E3-ligases for the target protein in the PROTAC field.
In the first part, a highly specific mitotic kinase Aurora-A degrader, JB170, was developed. This compound utilized Aurora-A inhibitor alisertib as the target ligand and thalidomide as the E3-ligase CRBN harness. The specificity of JB170 and the ternary complex formation was supported by the interactions between Aurora-A and CRBN. The PROTAC-mediated degradation of Aurora-A induced a distinct S- phase defect rather than mitotic arrest, shown by its catalytic inhibition. The finding demonstrates that Aurora-A has a non-catalytic role in the S-phase. Furthermore, the degradation of Aurora-A led to apoptosis in various cancer cell lines.
In the second part, two different series of WDR5 PROTACs based on two protein- protein inhibitors of WDR5 were evaluated. The most efficient degraders from both series recruited VHL as a E3-ligase and showed partial degradation of WDR5. In addition, the degradation efficiency of the PROTACs was significantly affected by the linker nature and length, highlighting the importance of linker length and composition in PROTAC design. The degraders showed modest proliferation defects at best in cancer cell lines. However, overexpression of VHL increased the degradation efficiency and the antiproliferative effect of the PROTACs.
In the last part, a rapamycin-based assay was developed to predict the degradative E3-ligase for a target. The assay was validated using the WDR5/VHL and Aurora- A/CRBN pairs. The result that WDR5 is degraded by VHL but not CRBN and Aurora-A is degraded by CRBN, matches observations made with PROTACs. This technique will be used in the future to find effective tissue-specific and essential E3-ligases for targeted degradation of oncoproteins using PROTACs.
Collectively, the work presented here provides a strategy to improve PROTAC development and a starting point for developing Aurora-A and WDR5 PROTACs for cancer therapy.