Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Year of publication
- 2022 (2)
Document Type
- Doctoral Thesis (2)
Keywords
- In-vitro-Kultur (2)
- Tissue Engineering (2)
- Hautverbrennung (1)
- Kryokonservierung (1)
- Melanom (1)
- Wundheilung (1)
- burn wound (1)
- cryokonservation (1)
- in vitro model (1)
- in vitro-Testsystem (1)
Mit jährlich circa 11 Millionen Fällen weltweit, stellen schwere Brandwunden bis heute einen großen Anteil an Verletzungen dar, die in Kliniken behandelt werden müssen. Während leichte Verbrennungen meist problemlos heilen, bedarf die Behandlung tieferer Verbrennungen medizinischer Intervention. Zellbasierte Therapeutika zeigen hier bereits große Erfolge, aufgrund der eingeschränkten Übertragbarkeit von Ergebnissen aus Tiermodellen ist jedoch sowohl die Testung neuer Produkte, als auch die Erforschung der Wundheilung bei Brandwunden noch immer schwierig.
Aufgrund dessen wurden in dieser Arbeit zwei Ziele verfolgt: Die Etablierung von Methoden, um ein zellbasiertes Therapeutikum produzieren zu können und die Entwicklung eines Modells zur Untersuchung von Verbrennungswunden. Zunächst wurden hierfür die Kulturbedingungen und -protokolle zur Isolation und Expansion von Keratinozyten so angepasst, dass sie gängigen Regularien zur Produktion medizinischer Produkte entsprechen. Hier zeigten die Zellen auch in anschließenden Analysen, dass charakteristische Merkmale nicht verloren hatten. Darüber hinaus gelang es, die Zellen mithilfe verschiedener protektiver Substanzen erfolgreich einzufrieren und zu konservieren.
Des Weiteren konnte ein Modell etabliert werden, das eine Verbrennung ersten Grades widerspiegelt. Über einen Zeitraum von zwei Wochen wurde seine Regeneration hinsichtlich verschiedener Aspekte, wie der Histomorphologie, dem Metabolismus und der Reepithelialisierungsrate, untersucht. Die Modelle zeigten hier viele Parallelen zur Wundheilung in vivo auf. Um die Eignung der Modelle zur Testung von Wirkstoffen zu ermitteln wurde außerdem eine Behandlung mit 5% Dexpanthenol getestet. Sie resultierte in einer verbesserten Histomorphologie und einer erhöhten Anzahl an proliferativen Zellen in den Modellen, beschleunigte jedoch die Reepithelialisierung nicht. Zusammengefasst konnten in dieser Arbeit zunächst Methoden etabliert werden, um ein medizinisches Produkt aus Keratinozyten herzustellen und zu charakterisieren. Außerdem wurde ein Modell entwickelt, anhand dessen die Wundheilung und Behandlung von Verbrennungen ersten Grades untersucht werden kann und welches als Basis zur Entwicklung von Modellen von tieferen Verbrennungen dienen kann.
Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation.
In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM.
Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused.
Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31.
For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis.
Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis.