Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Doctoral Thesis (4)
Language
- German (4)
Keywords
- Finite-Elemente-Methode (2)
- Mikrostrukturmodellierung (2)
- Aluminiumnitrid (1)
- Computersimulation (1)
- Dreidimensionales Modell (1)
- Elastizitätsmodul (1)
- Elektrokinetik (1)
- Elektrophorese (1)
- Elektrostatisches Feld (1)
- Faser (1)
Institute
Sonstige beteiligte Institutionen
Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufwändig und kostenintensiv. Simulationen hingegen können die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gefügekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverlässigen Ergebnisse liefern.
In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die häufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten können. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor.
Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen Körnern, die Nebenphase erstarrt während der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosität von AlN und Si3N4 wird als vernachlässigbar angesehen und in den Simulationen nicht berücksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngröÿenverteilung. Durch Infiltration mit flüssigem Silicium wurden die Hohlräume zwischen den Körnern aufgefüllt, um porenfreie SiSiC-Proben zu erhalten.
Anhand von Simulationen werden zunächst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (Wärmeleitfähigkeit, Elastizitätsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen.
Der Vergleich der Mikrostruktur von den computergenerierten Gefügen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gefügeparametern eine gute Übereinstimmung. Für die makroskopischen Eigenschaften wird auf der Basis einer ausführlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute Übereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation können damit erklärt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der Wärmeleitfähigkeit bewirken.
Nachdem die Gültigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen
Mikrostrukturparametern und Phaseneigenschaften auf die Wärmeleitfähigkeit, den Elastizitätsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenlänge der keramischen Körner verändert. Bei den AlN-Keramiken wird zusätzlich der Dihedralwinkel variiert, welcher Auskunft über den Benetzungsgrad der Flüssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverhältnis der langgezogenen Si3N4-Körner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den größten Einfluss auf die Eigenschaften der Keramik hat, während die übrigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen.
Um die Qualität der Simulationen zu überprüfen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse für die Wärmeleitfähigkeit und den Elastizitätsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegenüber den etablierten Modellen erzielt werden.
An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierfür werden die Wärmeleitfähigkeit, der Elastizitätsmodul und die Poisson-Zahl der Phasen getrennt voneinander über einen größeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abhängt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist.
Mit den im Rahmen dieser Arbeit durchgeführten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen können die Architektur des Gefüges simuliert und die Eigenschaften von Keramiken für individuelle Anwendungen berechnet werden. Dies ist die Basis für die Produktion von maßgeschneiderten Keramiken. Zudem können mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht möglich ist.
Die Mikrostruktur von Zirkonoxid–Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen äquivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repräsentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachträglich hinzugefüg.
Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE für die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache Übernahme der Voxelstrukturen in hexaedrische Elemente führt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zunächst eine adaptive Oberflächenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verkürzen ohne die Genauigkeit der FES zu beeinträchtigen, wurden die Oberflächenvernetzungen dergestalt vereinfacht, dass eine hohe Auflösung an den Ecken und Kanten der Strukturen erhalten blieb, während sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberflächenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und für die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert.
Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zunächst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Berücksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten.
Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute Übereinstimmung zwischen den experimentellen und simulierten Werten bezüglich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einflüsse verschiedener mikrostruktureller Parameter, wie Porosität, Korngröße und Komposition, auf das makroskopische Materialverhalten näher zu untersuchen.
Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des Wärmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte für eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im $\mu m$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen $50 \mathrm{kg/m^3}$ und $700 \mathrm{kg/m^3}$ und können als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der Dämmwirkung gegen Wärmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuvermögens im relevanten Wellenlängenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Berücksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungswärmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtwärmeleitfähigkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\
Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streukörper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu können, wird eine Näherungsmethode für die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollständigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell für kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur näherungsweisen Berechnung der Streueffizienzen für räumlich isotrop angeordnete Zylinder herangezogen werden kann. \\
Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit
eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer Wärmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung können diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\
Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitfähigkeit bzw. die Wärmeleitfähigkeit auch bei hohen Temperaturen oberhalb von $1000^\mathrm{o}\mathrm{C}$ zuverlässig bestimmen zu können. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten Wärmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse für berührungsfreie Hochtemperaturmessungen gezeigt.
Die Elektrophoretische Abscheidung (EPD) ist ein zweistufiger Prozess, bei dem geladene Partikel zunächst aufgrund eines elektrischen Feldes in einer Suspension bewegt und anschließend auf einer Oberfläche abgeschieden werden. Aufgrund der Möglichkeit zur kostengünstigen Massenproduktion von Filmen auf Oberflächen sowie darauf basierenden dreidimensionalen Mehrschichtsystemen, ist die EPD für die Industrie und die Medizin von großem Interesse. Der 3D-Druck ist dagegen weniger zur Massenproduktion, sondern vielmehr zur Herstellung von Prototypen in niedriger Stückzahl geeignet, was ihn jedoch nicht weniger interessant für Industrie und Medizin macht. Beim 3D-Druck wird das Material zum Aufbau einer dreidimensionalen Struktur lokal zur Verfügung gestellt, weshalb er den additiven Herstellungsverfahren zugeordnet werden kann. Eine Kombination beider Verfahren eröffnet neue Möglichkeiten zum Aufbau dreidimensionaler Strukturen. Da EPD theoretisch mit jedem geladenen Objekt, Material oder Molekül möglich ist, ließe sich das Potenzial des 3D-Drucks durch eine Kombination mit EPD signifikant steigern. Prototypen könnten aus einer Vielzahl an Materialien in einem schnellen und kostengünstigen additiven Herstellungsverfahren entstehen, wodurch die Möglichkeit zum Einsatz als Massenproduktionsverfahren gegeben ist. Eine Nutzung der EPD als 3D-Druck-Verfahren ist jedoch nur möglich, wenn es gelingt, die Abscheidung der Partikel lokal zu fokussieren und somit den Aufbau der dreidimensionalen Struktur zu steuern und zu kontrollieren.
In der vorliegenden Arbeit wird untersucht, ob lokale Abscheidung von keramischen Partikeln durch EPD realisierbar ist und welche Bedingungen dazu vorliegen müssen. Insbesondere werden die Bewegungen der geladenen Partikel im inhomogenen elektrischen Feld analysiert und der Einfluss der Polarität des Suspensionsmediums auf die Partikelbewegung und die Partikelablagerung in einer selbstentwickelten Mikro-Flusskammer untersucht.
Im unpolaren Medium Cyclohexan steigt die Bewegungsgeschwindigkeit der Partikel linear mit der angelegten Spannung, respektive der elektrischen Feldstärke. Die Bewegungsrichtung der Partikel erfolgt entsprechend ihrer positiven Ladung in Richtung der Kathode. Die Partikel scheiden sich als stäbchenförmige Deposition verteilt auf der Kathodenoberfläche ab. Die Häufigkeit der Ablagerung ist dabei an der Elektrodenspitze, also im Bereich der höchsten Feldstärke am größten. Die Stabilisierung der Partikel in einem unpolaren Lösemittel wird durch eine Oberflächenbeschichtung mit verschiedenen, strukturähnlichen Dispergatoren realisiert. Alle verwendeten Dispergator-Partikel-Systeme zeigen näherungsweise gleiches elektrophoretisches Verhalten.
In Wasser bewegen sich die positiv geladenen Partikel bei einer angelegten Spannung von unter 3 V entgegen der elektrostatischen Kräfte in Richtung Anode, deren Oberfläche sie jedoch nicht erreichen, da sie vorher abgelenkt werden. Somit erfolgt keine Abscheidung der Partikel auf keiner der beiden Elektroden. Ab einer Spannung von 3 V beginnen sich Partikel im polaren Medium in Form einer dendritischen Struktur an der Kathodenspitze abzuscheiden. Bei Spannungen von mehr als 17 V beginnt in Wasser eine sichtbare Bildung von Gasblasen an der Anodenoberfläche. Beim Abriss der Blasen von der Oberfläche wird die vorhandene dendritische Struktur zerstört.
In Mischungen aus Ethanol und Cyclohexan wird die Spannung von 5 V konstant gehalten und das Mischungsverhältnis der beiden Lösemittel, und somit die Polarität der Suspension, variiert. Bereits bei 0,1 Vol.-% Ethanol-Anteil, sowie ab 30 Vol.-% Ethanol findet eine Partikelbewegung in Richtung der Anode, also entgegen der elektrostatischen Kräfte, statt. Da die Partikel die Anodenoberfläche aufgrund der repulsiven Wechselwirkungen nicht erreichen, findet keine Abscheidung statt. Nur bei einem Ethanol-Anteil von 7,5 Vol.-% bis etwa 30 Vol.-% bewegen sich die Partikel in Richtung Kathode, wo sie sich auch abscheiden.
Die merkwürdigen Bewegungsphänomene der Partikel in der Mikro-Flusskammer konnten nicht mit Sicherheit aufgeklärt werden. Induced-charge electroosmotic flow oder andere elektrokinetische Effekte könnten wirken und so die elektrophoretische Partikelbewegung überlagern oder beeinflussen.
Gezeigt werden konnte jedoch, dass eine lokale Abscheidung von Partikeln mittels EPD möglich ist. Dazu ist unter den beschriebenen experimentellen Bedingungen in Wasser eine Spannung im Bereich zwischen 3 V und 17 V nötig, um lokal eine dendritische Struktur abzuscheiden. In reinem Cyclohexan und für bestimmte Mischungsverhältnisse von Ethanol und Cyclohexan erfolgt die Abscheidung bei jedem untersuchten Spannungswert. Anders als in Wasser ist die stäbchenförmige Abscheidung jedoch an mehreren Stellen auf der Elektrodenoberfläche zu beobachten. Dennoch kann auch hier von einer lokalen Abscheidung gesprochen werden, da die Wahrscheinlichkeit für die Abscheidung an der Elektrodenspitze am größten ist, was nach einiger Zeit zu einer lokal erhöhten Schichtdicke führt.