Refine
Has Fulltext
- yes (18)
Is part of the Bibliography
- yes (18)
Year of publication
Document Type
- Doctoral Thesis (18)
Keywords
- ARPES (6)
- Photoelektronenspektroskopie (5)
- Topologischer Isolator (5)
- photoelectron spectroscopy (3)
- Elektronenstruktur (2)
- Phasenumwandlung (2)
- RIXS (2)
- Rashba-Effekt (2)
- Röntgenspektroskopie (2)
- XPS (2)
Photoelectron spectroscopy proves as a versatile tool for investigating various aspects of the electronic structure in strongly correlated electron systems. Influencing the manifestation of strong correlation in Ce-based surface alloys is the main task of this work. It is shown, that the manifestation of the Kondo ground state is influenced by a multitude of parameters such as the choice of the metal binding partner in binary Ce compounds, the surface alloy layer thickness and accompanying variations in the lattice structure as well as the interfaces to substrate or vacuum. Gaining access to these parameters allows to directly influence essential state variables, such as the f level occupancy nf or the Kondo temperature TK.
The center of this work are the intermetallic thin films of CePt5/Pt(111) and CeAgx/Ag(111). By utilizing different excitation energies, photoemission spectroscopy provides access to characteristic features of Kondo physics in the valence band, such as the Kondo resonance and its spin-orbit partner at the Fermi level, as well as the multiplet structure of the Ce 3d core levels. In this work both approaches are applied to CePt5/Pt(111) to determine nf and TK for a variety of surface alloy layer thicknesses. A temperature dependent study of the Ce 3d core levels allows to determine the systems TK for the different layer thicknesses. This leads to TK ≈200–270K in the thin layer thickness regime and TK >280K for larger layer thicknesses. These results are confirmed by fitting the Ce 3d multiplet based on the Gunnarsson-Schönhammer formalism for core level spectroscopy and additionally by valence band photoemission spectra of the respective Kondo resonances. The influence of varying layer thickness on the manifestation of strong correlation is subsequently studied for the surface alloy CeAgx/Ag(111). Furthermore, the heavy element Bi is added, to investigate the effects of strong spin-orbit coupling on the electronic structure of the surface alloy.
Die vorliegende Arbeit demonstriert an Hand von verschiedenen Modellsystemen wie detailliert sich die grundlegenden Eigenschaften molekularer Adsorbate mit der winkelaufgelösten Photoemission erkunden lassen. Die von Peter Puschnig et al. vorgestellte Verknüpfung zwischen Photoemissionsintensität und den Molekülorbitalen im Grundzustand mittels einer Fouriertransformation war dabei entscheidend, um die verschiedenen physikalischen Effekte einordnen und verstehen zu können. Während für Coronen oder HBC die Orbitale im Grundzustand sehr gut zum Experiment passen, lassen sich für PTCDA und NTCDA einige Abweichungen von der DFT-Rechnung auf Basis der (semi-)lokalen GGA- oder LDA-Funktionale erkennen, die sich bei Messungen mit s-Polarisation hervorheben lassen. Diese können auf den Einfluss des Endzustandes in der Photoemission zurückgeführt werden. Im Rahmen der Dysonorbitale lassen sich die dafür verantwortlichen Relaxationseffekte zwischen dem N-Elektronensystem des Moleküls im Grundzustand und dem (N-1)-Elektronensystem des zurückbleibenden Kations explizit beschreiben. Die Berechnung des Photoemissionssignals mittels Fouriertransformation des Grundzustandes kann darüber hinaus weitere physikalische Effekte nicht korrekt berücksichtigen. Erste Anzeichen hierfür konnten am PTCDA-HOMO bei einer Photonenenergie von 27 eV und s-Polarisation detektiert werden. Darüber hinaus kann die Näherung des Photoelektronenendzustands als ebene Welle den beobachteten zirkularen Dichroismus am HOMO und LUMO von PTCDA nicht erklären. Erst in der Erweiterung durch eine Partialwellenzerlegung des Photoelektronenendzustands tritt ein dichroisches Signal in der theoretischen Beschreibung auf. Für das delokalisierte pi-Elektronensystem von PTCDA ist aber selbst diese Verfeinerung noch nicht ausreichend, um das Experiment korrekt beschreiben und weitere Eigenschaften vorhersagen zu können. Qualitativ lassen sich die Veränderungen im CDAD bei der Transformation um 90° für HOMO und LUMO mit einem gruppentheoretischen Ansatz verstehen. Damit ist es möglich, den molekularen Zuständen ihre irreduzible Darstellung zuzuweisen, worüber sich für PTCDA die Verteilung der quantenmechanischen Phase rekonstruieren lässt. Dies ist deshalb äußerst bemerkenswert, da üblicherweise in physikalischen Experimenten nur die Intensität und keine Informationen über die Phase messbar sind. Damit können die Photoemissionsmessungen im k||-Raum vollständig in den Realraum transformiert werden, wodurch die laterale Ortsinformation über die höchsten besetzen Molekülorbitale von PTCDA zugänglich wird. Neben der Bestimmung der molekularen Orbitale, deren Struktur von der Anordnung der Atome im Molekül dominiert wird, enthält die winkelaufgelöste Photoemission Informationen über die Adsorbat-Substrat-Wechselwirkung. Für hoch geordnete Monolagen ist es möglich, die verschiedenen Verbreiterungsmechanismen zu trennen und zu analysieren. Bei den untersuchten Systemen sind die Verbreiterungen aufgrund von unterschiedlichen Adsorptionsplätzen oder Probeninhomogenitäten ebenso wie die experimentelle Auflösung der 2D-Analysatoren vernachlässigbar gegenüber Lebensdauereffekten und evtl. Verbreiterung aufgrund von Dispersionseffekten. Bereits bei den äußerst schwach wechselwirkenden Systemen Coronen auf Ag(111) und Au(111) unterscheiden sich die beiden Systeme in ihrer Lorentzverbreiterung beim HOMO. In erster Näherung lässt sich dies auf eine Lebensdauer des entstandenen Photolochs zurückführen, welches je nach Stärke der Substratkopplung unterschiedlich schnell mit Substratelektronen aufgefüllt werden kann. Die Lorentzbreite als Indikator für die Wechselwirkung bzw. Hybridisierungsstärke zeigt für die Systeme mit Ladungstransfer vom Substrat in das Molekül eine sehr viel größere Verbreiterung. Zum Beispiel beträgt die Lorentzbreite des LUMO für NTCDA/Ag(110) FWHM=427 meV, und somit eine mehr als fünfmal so große Verbreiterung als für das HOMO von Coronen/Au(111). Diese starke Verbreiterung geht im Fall von NTCDA/Ag(110) wie auch bei den untersuchten Systemen NTCDA/Cu(100) und PTCDA/Ag(110) einher mit einem Ladungstransfer vom Substrat ins Molekül, sowie mit der Ausbildung eines zusätzlichen charakteristischen Signals in der Winkelverteilung des LUMO, dem Hybridisierungszustand bei kx,y=0Å-1. Die Intensität dieses Zustands korreliert bei den Systemen NTCDA auf Cu(100) bzw. auf Ag(110) jeweils mit der Lorentzbreite des LUMO-Zustands. Die Hybridisierung zwischen Molekül und Substrat hat noch weitere Auswirkungen auf die beobachtbaren physikalischen Eigenschaften. So führt die starke Hybridisierung mit dem Substrat wiederum dazu, dass sich die intermolekulare Dispersion für die Elektronen im LUMO-Zustand deutlich verstärkt. Der direkte Überlapp der Wellenfunktionen ist im System PTCDA/Ag(110) laut DFT-Rechnungen relativ klein und führt lediglich zu einer Bandbreite von 60 meV. Durch die Hybridisierung mit den delokalisierten Substratbändern erhöht sich der Grad der Delokalisierung im LUMO-Zustand, d.h. die Bandbreite steigt auf 230 meV, wie das Experiment bestätigt. Im Gegensatz zu früheren STM/STS-basierten Messungen [Temirov2006] kann mit der Kombination aus DFT-Rechnung und ARPES-Experiment eindeutig nachgewiesen werden, dass das Substrat im Fall von PTCDA/Ag(110) die Bandbreite verstärken kann, sodass sich die effektive Masse der Lochladungsträger von meff=3,9me auf meff=1,1me reduziert. Im Blick auf die eingangs gestellte Frage, ob sich molekulare Adsorbate eher wie isolierte Moleküle oder als periodische Festkörper beschreiben lassen, kommt diese Arbeit auf ein differenziertes Ergebnis. In den Impulsverteilungen, die sich aus der Form der molekularen Wellenfunktionen ableiten lassen, spiegelt sich eindeutig der isolierte molekulare Charakter wieder. Dagegen zeigt sich in der Energiedispersion E(k||) ein delokalisierter, blochartiger Charakter, und es konnte demonstriert werden, dass es zu einem Vermischen von Metall- und Molekülwellenfunktionen kommt. Molekulare Adsorbate sind also beides, isolierte Moleküle und zweidimensionale Kristalle mit delokalisierten Zuständen.
In this thesis, I present a model system for carbohydrate interactions with single-crystalline Ru surfaces. Geometric and electronic properties of copper phthalocyanine (CuPc) on top of graphene on hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10) surfaces have been studied. First, the Fermi surfaces and band structures of the three Ru surfaces were investigated by high-resolution angle-resolved photoemission spectroscopy. The experimental data and theoretical calculations allow to derive detailed information about the momentum-resolved electronic structure. The results can be used as a reference to understand the chemical and catalytic properties of Ru surfaces. Second, graphene layers were prepared on the three different Ru surfaces. Using low-energy electron diffraction and scanning tunneling microscopy, it was found that graphene can be grown in well-ordered structures on all three surfaces, hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10), although they have different surface symmetries. Evidence for a strong interaction between graphene and Ru surfaces is a 1.3-1.7e V increase in the graphene pi-bands binding energy with respect to free-standing graphene sheets. This energy variation is due to the hybridization between the graphene pi bands and the Ru 4d electrons, while the lattice mismatch does not play an important role in the bonding between graphene and Ru surfaces. Finally, the geometric and electronic structures of CuPc on Ru(10-10), graphene/Ru(10-10), and graphene/Ru(0001) have been studied in detail. CuPc molecules can be grown well-ordered on Ru(10-10) but not on Ru(0001). The growth of CuPc on graphene/Ru(10-10) and Ru(0001) is dominated by the Moire pattern of graphene. CuPc molecules form well-ordered structures with rectangular unit cells on graphene/Ru(10-10) and Ru(0001). The distance of adjacent CuPc molecules is 1.5 and 1.3 nm on graphene/Ru(0001) and 1.54 and 1.37 nm on graphene/Ru(10-10). This indicates that the molecule-substrate interaction dominates over the intermolecular interaction for CuPc molecules on graphene/Ru(10-10) and graphene/Ru(0001).
Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei
denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabhängigen Spinaufspaltung der Bandstruktur führt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabhängigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplementärer, oberflächensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie
(STM) und Photoelektronenspektroskopie (PES) - an geeigneten
Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zusätzliche Experimente werden an dünnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgeführt. Die inversionsasymmetrische Kristallstruktur in BiTeX führt zur Existenz zweier nicht-äquivalenter Oberflächen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberflächen gespaltener Einkristalle belegen für BiTeI(0001) eine Koexistenz beider Terminierungen auf einer Längenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zurückführen lassen. Diese Domänen sind groß genug, um eine vollständig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei räumlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen Längenskala aus. Atomar
aufgelöste STM-Messungen zeigen für die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberflächen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativität der Halogene resultiert in verschieden starken Ladungsübergängen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberflächeneigenschaften ist durch die Bedampfung mit Cs möglich, wobei eine Änderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfläche durch Heizen im Vakuum, bewirkt dies eine Veränderung der Bandstruktur in zwei Schritten. So führt zunächst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberflächenzustände hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfläche - im Volumen bleibt die inversionsasymmetrische
Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von Dünnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Veränderung der Morphologie und elektronischen Struktur in Abhängigkeit von Stöchiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der Dünnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberflächenzustands auf.
In this dissertation the electronic and high-energy optical properties of thin nanoscale
films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied
by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss
spectroscopy (EELS). Magnetic topological insulators are presently of broad interest
as the combination of ferromagnetism and spin-orbit coupling in these materials
leads to a new topological phase, the quantum anomalous Hall state (QAHS), with
dissipation less conduction channels. Determining and controlling the physical
properties of these complex materials is therefore desirable for a fundamental understanding
of the QAHS and for their possible application in spintronics. EELS can
directly probe the electron energy-loss function of a material from which one can
obtain the complex dynamic dielectric function by means of the Kramers-Kronig
transformation and the Drude-Lindhard model of plasmon oscillations.
The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with
regards to inelastic background contributions. It is shown that the spectra can be
accurately described based on the electron energy-loss function obtained from an
independent EELS measurement. This allows for a comprehensive and quantitative
analysis of the XPS data, which will facilitate future core-level spectroscopy studies
in this class of topological materials. From the EELS data, furthermore, the bulk and
surface optical properties were estimated, and compared to ab initio calculations
based on density functional theory (DFT) performed in the GW approximation
for Sb2Te3. The experimental results show a good agreement with the calculated
complex dielectric function and the calculated energy-loss function. The positions of
the main plasmon modes reported here are expected to be generally similar in other
materials in this class of nanoscale TI films. Hence, the present work introduces
EELS as a powerful method to access the high-energy optical properties of TI
thin films. Based on the presented results it will be interesting to explore more
systematically the effects of stoichiometry, magnetic doping, film thickness and
surface morphology on the electron-loss function, potentially leading to a better
understanding of the complex interplay of structural, electronic, magnetic and
optical properties in MTI nanostructures.
Transition metal oxides (TMO) represent a highly interesting material class as
they exhibit a variety of different emergent phenomena including multiferroicity and
superconductivity. These effects result from a significant interplay of charge, spin
and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies
(OV) at the surface of certain d0 TMO release free charge carriers and prompt the
formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a
prototypical and promising d0 TMO. It displays ferroelectricity at room temperature
and features several structural phase transitions, from cubic over tetragonal (at
room temperature) and orthorhombic to rhombohedral. The spontaneous electric
polarization in BaTiO3 can be used to manipulate the physical properties of adjacent
materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied
in great detail, the microscopic electronic structure at the surface and interface of
BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation
within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and
the structural phase transitions in BaTiO3.
This thesis investigates the electronic structure of different BaTiO3 systems by
means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of
BaTiO3 single crystals is systematically characterized and compared to theoretical
band structure calculations. A finite p-d hybridization of titanium and oxygen states
was inferred at the high binding energy side of the valence band. In BaTiO3 thin films,
the occurrence of spectral weight near the Fermi level could be linked to a certain
amount of OV at the surface which effectively dopes the host system. By a systematic
study of the metallic surface states as a function of temperature and partial oxygen
pressure, a model was established which reflects the depletion and accumulation of
charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile
behavior of these surface states.
The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface
of BaTiO3-based heterostructures. Therefore, the interface electronic structure
of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by
also including a thickness dependent characterization. The ARPES results, indeed,
confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify
the energy position and the Fermi vector of the spin-split states. This observation
is associated with the appearance of an interface state which was observed for very
low film thickness. Both spectral findings suggest a significant coupling between the
Bi films and BaTiO3.
Im Rahmen der vorliegenden Arbeit werden mit einem Rastertunnelmikroskop (RTM) Ladungsdichtemodulationen
(LDM) auf Oberflächen von drei verschiedenen Probensystemen
untersucht. Bei den Proben handelt es sich um Chrom auf Wolfram(110), Iridiumditellurid
(IrTe2) als Volumenmaterial und Eisen auf Rhodium(001). Es werden sowohl die Temperaturabhängigkeit
der Phasenübergänge als auch die Wechselwirkung zwischen magnetischen
und elektronischen Eigenschaften analysiert.
Chrom (Cr) ist ein einfaches Übergangsmetall, in dem sowohl eine klassische Ladungsdichtewelle
(LDW) als auch eine Spindichtewelle (SDW) auftreten. Die im Experiment
betrachteten Cr-Inseln auf Wolfram(110) schlagen eine Brücke zwischen dem Volumenmaterial
und ultradünnen Schichten. Dabei zeigt sich der Zusammenhang zwischen elektronischen
und magnetischen Eigenschaften in der Ausbildung einer LDW-Lücke und dem
gleichzeitigen Verschwinden des magnetischen Kontrastes bei lokalen Schichtdicken von
dCr = 4nm. Dies kann durch eine Rotation des Spindichtewellenvektors Q erklärt werden.
Für dCr < 3nm verschwindet die LDW erneut. Zusätzlich zur LDW und SDW
entsteht aufgrund der unterschiedlichen Gitterparameter von Chrom und Wolfram bei
lokalen Schichtdicken von dCr < 3nm eine Moiré-Überstruktur.
IrTe2 ist Gegenstand zahlreicher aktueller Forschungsaktivitäten und weist eine LDM mit
gleichzeitiger Transformation des atomaren Gitters auf. Ein Phasenübergang erster Ordnung
erzeugt zunächst bei der Übergangstemperatur TC = 275K eine Modulation mit
dem Wellenvektor q = 1/5(1, 1, 0). Mithilfe temperaturabhängiger RTM-Messungen kann
das Phasendiagramm um einen weiteren Übergang erster Ordnung bei TS = 180K erweitert
werden. Dabei bilden sich zunehmend Te-Dimere an der sichtbaren (001)-Oberfläche
und IrTe2 wechselt in einen Grundzustand mit maximaler Dichte von Dimeren und dem
Wellenvektor q = 1/6(1, 1, 0). Der Mechanismus beider Phasenübergänge wird durch die
Probenqualität und die Oberflächenpräparation beeinflusst, sodass die Phasenübergänge
erster Ordnung teilweise verlangsamt ablaufen. Durch eine Analyse der Oberflächendynamik
am Phasenübergang kann der zugrundeliegende Mechanismus des Domänenwachstums
im Realraum untersucht werden.
Im letzten Teil der Arbeit werden ultradünne Eisenfilme auf Rhodium(001) betrachtet.
Dabei treten auf der Doppellage Eisen (Fe) auf Rhodium (Rh) spannungsabhängige
elektronische Modulationen mit senkrecht zueinander orientierten Wellenvektoren
q1 = [(0, 30 ± 0, 03), 0, 0] und q2 = [0, (0, 30 ± 0, 03), 0] in Richtung [100] und [010] auf.
Temperaturabhängige Messungen zeigen die stetige Verkleinerung der Modulation beim
Erwärmen der Probe und somit einen Phasenübergang zweiter Ordnung. Die LDM tritt
auch auf der dritten und vierten Lage Eisen mit gleichgerichteten aber kleineren Wellenvektoren
q auf. Spinpolarisierte RTM-Daten zeigen einen c(2×2)-Antiferromagnetismus auf
einer Monolage Eisen. Für Fe-Bedeckungen von 1ML - 5ML tritt Ferromagnetismus
perpendikular zur Oberfläche auf. Diese Messungen zeigen erstmals gleichzeitiges Auftreten
einer elektronischen und magnetischen Phase in einem reinen 3d-Übergangsmetall
im Realraum.
In this thesis, thin-film solar cells on the basis of Cu(In,Ga)(S,Se)2 (CIGSSe) were investigated.
Until today, most high efficient CIGSSe-based solar cells use a toxic and wetchemical deposited CdS buffer layer, which doesn’t allow a dry inline production. However, a promising and well-performing alternative buffer layer, namely indium sulfide, has been found which doesn’t comprise these disadvantages. In order to shed light on these well-performing devices, the surfaces and in particular the interfaces which play a major role for the charge carrier transport are investigated in the framework of this thesis. Both, the chemical and electronic properties of the solar cells’ interfaces were characterized.
In case of the physical vapor deposition of an InxSy-based buffer layer, the cleaning step of the CdS chemical-bath deposition is not present and thus changes of the absorber surface have to be taken into account. Therefore, adsorbate formation, oxidation, and segregation of absorber elements in dependence of the storing temperature and the humidity are investigated in the first part of this thesis.
The efficiencies of CIGSSe-based solar cells with an InxSy buffer layer depend on the nominal indium concentration x and display a maximum for x = 42 %. In this thesis, InxSy samples with a nominal indium concentration of 40.2% ≤ x ≤ 43.2% were investigated by surface-sensitive and surface-near bulk-sensitive techniques, namely with photoemission spectroscopy (PES) and x-ray emission spectroscopy (XES). The surfaces of the films were found to be sulfur-poor and indium-rich in comparison with stoichiometric In2S3. Moreover, a direct determination of the band alignment at the InxSy/CISSe interface in dependence of the nominal indium concentration x was conducted with the help of PES and inverse PES (IPES) and a flat band alignment was found for x = 42 %.
In order to study the impact of a heat treatment as it occurs during subsequent cell process steps, the indium sulfide-buffered absorbers were annealed for 30 minutes under UHV conditions at 200 °C after the initial data set was taken. Besides a reported enhanced solar cell performance, a significant copper diffusion from the absorber into the buffer layer takes place due to the thermal treatment. Accordingly, the impact of the copper diffusion on the hidden InxSy/CISSe interface was discussed and for x = 40.2% a significant cliff (downwards step in the conduction band) is observed. For increasing x, the alignment in the conduction band turns into a small upwards step (spike) for the region 41% ≤ x ≤ 43.2%. This explains the optimal solar cell performance for this indium contents.
In a further step, the sodium-doped indium sulfide buffer which leads to significantly higher efficient solar cells was investigated. It was demonstrated by PES/IPES that the enhanced performance can be ascribed to a significant larger surface band gap in comparison with undoped InxSy. The occurring spike in the Na:InxSy/CISSe band alignment gets reduced due to a Se diffusion induced by the thermal treatment. Furthermore, after the thermal treatment the sodium doped indium sulfide layer experiences a copper diffusion which is reduced by more than a factor of two compared to pure InxSy.
Next, the interface between the Na:InxSy buffer layer and the i-ZnO (i = intrinsic, non-deliberately doped), as a part of the transparent front contact was analyzed. The i-ZnO/Na:InxSy interface shows significant interdiffusion, leading to the formation of, e.g., ZnS and hence to a reduction of the nominal cliff in the conduction band alignment.
In the last part of this thesis, the well-established surface-sensitive reflective electron energy loss spectroscopy (REELS) was utilized to study the CIGSSe absorber, the InxSy buffer, and annealed InxSy buffer surfaces. By fitting the characteristic inelastic scattering cross sections λK(E) with Drude-Lindhard oscillators the dielectric function was identified. The determined dielectric functions are in good agreement with values from bulk-sensitive optical measurements on indium sulfide layers. In contrast, for the chalcopyrite-based absorber significant differences appear. In particular, a substantial larger surface band gap of the CIGSSe surface of E^Ex_Gap = (1.4±0.2) eV in comparison with bulk values is determined. This provides for the first time an independent verification of earlier PES/IPES results. Finally, the electrons’ inelastic mean free paths l for the three investigated surfaces are compared for different primary energies with theoretical values and the universal curve.
This thesis focuses on the investigation of the electronic structure of amino acids and
salts in aqueous solution using X-ray spectroscopic methods. Both material groups are
of fundamental importance with regards to many physiological reactions, especially
for the Hofmeister effect which describes the solubility of proteins in salt solutions.
Hence, the investigation of the electronic structure of amino acids and the influence of
ions on the hydrogen bonding network of liquid water are important milestones to a
deeper understanding of the Hofmeister series.
Besides investigating the electronic structure of amino acids in aqueous solution,
the spectra were used to develop a building block model of the spectral fingerprints of
the functional groups and were compared to spectral signatures of suitable reference
molecules. In the framework of this thesis, it is shown that the building block approach
is a useful tool with allows the interpretation of spectral signatures of considerably
more complex molecules
In this work, the focus lies on the investigation of the occupied and unoccupied
electronic states of molecules in solid state, as well as in aqueous solution. Hereby,
different X-ray spectroscopic methods were applied. X-ray emission spectroscopy
(XES) was used to probe the occupied electronic structure of the solution, while the
unoccupied electronic structure was addressed by using X-ray absorption spectroscopy
(XAS). Finally, resonant inelastic X-ray scattering (RIXS) as a combination of XAS
and XES measurements provides the combined information about the unoccupied and
occupied molecular levels. The element specific character of the three measurement
methods is a feature which allows the investigation of the local electronic structure of
a single functional group. With RIXS, also non-equivalent atoms of the same element
can be addressed separately.
Within this thesis firstly, a library of the XE spectra of all 20 proteinogenic amino
acids in zwitterionic form is presented. From this sample-set XES fingerprints of
the protonated alpha-amino group NH3+ and the deprotonated carboxylic group COO- were evaluated and used to identify the XES fingerprints of the nitrogen and oxygen
containing functional groups of the side chains of the amino acids. The data is discussed
based on a building block approach. Furthermore, the XE spectra of the functional
groups of lysine and histidine, namely the NH2 group and the C3N2H4 ring structure,
are both compared to XE spectra of suitable reference molecules (imidazole, ammonia
and methylamine). It is found that the XE and RIXS spectra of the side chains of lysine
and histidine show large similarities to the XE spectra of the reference molecules. This
agreement in the XE and RIXS spectra allows a qualitative investigation of XE and
RIXS spectra of more complex amino acids using the XE and RIXS spectra of suitable
reference molecules.
The chemical structure of histidine and proline is quite different from the structures
of the other proteinogenic amino acids. Due to the unique chemical structure of
the side chain which in both cases consists of a heterocyclic ring structure, these two
amino acids were investigated in more detail. Zubavichus et al. [1] have shown that
amino acids are decomposing while exposed to X-ray radiation of the experiment. The
damage is irreversible and molecular fragments can adsorb on the membrane of the
experimental setup. This contamination can also create a spectral signature which
then overlaps with the signal of the solution and which complicates the interpretation
of the data. To record spectra which are free from contributions of adsorbed molecular
fragments on the membrane, the adsorption behavior was investigated.
In contrast to the solid phase in which the amino acids are present as salts in one
electronic conformation, the charge state of the amino acids can be manipulated in
aqueous solution by tuning the pH-value. By doing this, all possible charge states are
accessible (cation, anion, zwitterion). In this work it is shown that also the spectra
of the different charge states can be modeled by the spectra of suitable reference
molecules using the building block approach. The spectral changes occurring upon
protonation and deprotonation of the functional groups are explored and verified by
comparing them to theoretical calculations.
The comparison with measurements of pyrrolidine show that the electronic structure
which surrounds the nitrogen atom of proline is strongly influenced by the
ring structure of the side chain. Furthermore, the proline, pyrrolidine, and histidine
molecules are also degrading during the liquid sample measurements. This can be
observed by the detection of a new spectral component which increases with the
measurement time originating from the window membrane. In all cases, the speed of
the agglomeration of molecular fragments at the membrane was observed to be highly
sensitive to the pH value of the solution.
To understand the Hofmeister series, also the impact of the salt ions have to be
investigated. In this study the influence of potassium chloride (KCl) on the hydrogen
bond network of water was studied by using non-resonantly excited XES as well as
RIXS. A decreased dissociation of hydrogen molecules and changes in the molecular
vibrations could be detected. These changes were interpreted with a molecular
reorganization of the water molecules and a decreased number of hydrogen bonds.