### Refine

#### Has Fulltext

- yes (14)

#### Is part of the Bibliography

- yes (14)

#### Document Type

- Doctoral Thesis (14)

#### Language

- English (14)

#### Keywords

- Topologie (4)
- Topologischer Isolator (4)
- Fermionensystem (3)
- Starke Kopplung (3)
- Elektronenkorrelation (2)
- Elektronischer Transport (2)
- Festkörperphysik (2)
- Monte-Carlo-Simulation (2)
- Spin-Bahn-Wechselwirkung (2)
- Spintronik (2)

#### Institute

#### Sonstige beteiligte Institutionen

In this thesis we discuss the potential of nanodevices based on topological insulators. This novel class of matter is characterized by an insulating bulk with simultaneously conducting boundaries. To lowest order, the states that are evoking the conducting behavior in TIs are typically described by a Dirac theory. In the two-dimensional case, together with time- reversal symmetry, this implies a helical nature of respective states. Then, interesting physics appears when two such helical edge state pairs are brought close together in a two-dimensional topological insulator quantum constriction. This has several advantages. Inside the constriction, the system obeys essentially the same number of fermionic fields as a conventional quantum wire, however, it possesses more symmetries. Moreover, such a constriction can be naturally contacted by helical probes, which eventually allows spin- resolved transport measurements.
We use these intriguing properties of such devices to predict the formation and detection of several profound physical effects. We demonstrate that narrow trenches in quantum spin Hall materials – a structure we coin anti-wire – are able to show a topological super- conducting phase, hosting isolated non-Abelian Majorana modes. They can be detected by means of a simple conductance experiment using a weak coupling to passing by helical edge states. The presence of Majorana modes implies the formation of unconventional odd-frequency superconductivity. Interestingly, however, we find that regardless of the presence or absence of Majoranas, related (superconducting) devices possess an uncon- ventional odd-frequency superconducting pairing component, which can be associated to a particular transport channel. Eventually, this enables us to prove the existence of odd- frequency pairing in superconducting quantum spin Hall quantum constrictions. The symmetries that are present in quantum spin Hall quantum constrictions play an essen- tial role for many physical effects. As distinguished from quantum wires, quantum spin Hall quantum constrictions additionally possess an inbuilt charge-conjugation symmetry. This can be used to form a non-equilibrium Floquet topological phase in the presence of a time-periodic electro-magnetic field. This non-equilibrium phase is accompanied by topological bound states that are detectable in transport characteristics of the system. Despite single-particle effects, symmetries are particularly important when electronic in- teractions are considered. As such, charge-conjugation symmetry implies the presence of a Dirac point, which in turn enables the formation of interaction induced gaps. Unlike single-particle gaps, interaction induced gaps can lead to large ground state manifolds. In combination with ordinary superconductivity, this eventually evokes exotic non-Abelian anyons beyond the Majorana. In the present case, these interactions gaps can even form in the weakly interacting regime (which is rather untypical), so that the coexistence with superconductivity is no longer contradictory. Eventually this leads to the simultaneous presence of a Z4 parafermion and a Majorana mode bound at interfaces between quantum constrictions and superconducting regions.

In the field of spintronics, spin manipulation and spin transport are the main principles that need to be implemented. The main focus of this thesis is to analyse semiconductor systems where high fidelity in these principles can be achieved. To this end, we use numerical methods for precise results, supplemented by simpler analytical models for interpretation.
The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting not only because it provides a topologically distinct phase of matter, physically manifested in its protected transport properties, but also since within this system, ballistic transport of high quality can be realized, with Rashba spin-orbit coupling and electron densities that are tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport in this system shows interesting physics because the effects of Rashba spin-orbit terms and the intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter, we propose a beam splitter setup for all-electrical generation and detection of spin currents. Its working principle is similar to optical birefringence. In this setup, we analyse spin current and spin polarization signals of different spin vector components and show that large in-plane spin polarization of the current can be obtained. Since spin is not a conserved quantity of the model,
we first analyse the transport of helicity, a conserved quantity even in presence of Rashba spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization of the physical spin.
Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e. a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the metallic energy regimes, the signals are qualitatively explained by simple analytic models. In the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced overlap of edge states.
In the part on methods, we discuss two complementary methods for construction of effective semiconductor models, the envelope function theory and the method of invariants. Further, we present elements of transport theory, with some emphasis on spin-dependent signals. We show the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of electronic transport and to the characterization of topological phases. Further, as application of the adiabatic theorem to a control problem, we show that universal control of a single spin in a heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance,
but using a quadrupole field which is adiabatically changed as control knob. For experimental realization, we propose a GaAs/GaAlAs quantum well system.

The quantum Hall (QH) effect, which can be induced in a two-dimensional (2D) electron gas by an external magnetic field, paved the way for topological concepts in condensed matter physics. While the QH effect can for that reason not exist without Landau levels, there is a plethora of topological phases of matter that can exist even in the absence of a magnetic field. For instance, the quantum spin Hall (QSH), the quantum anomalous Hall (QAH), and the three-dimensional (3D) topological insulator (TI) phase are insulating phases of matter that owe their nontrivial topology to an inverted band structure. The latter results from a strong spin-orbit interaction or, generally, from strong relativistic corrections. The main objective of this thesis is to explore the fate of these preexisting topological states of matter, when they are subjected to an external magnetic field, and analyze their connection to quantum anomalies. In particular, the realization of the parity anomaly in solid state systems is discussed. Furthermore, band structure engineering, i.e., changing the quantum well thickness, the strain, and the material composition, is employed to manipulate and investigate various topological properties of the prototype TI HgTe.
Like the QH phase, the QAH phase exhibits unidirectionally propagating metallic edge channels. But in contrast to the QH phase, it can exist without Landau levels. As such, the QAH phase is a condensed matter analog of the parity anomaly. We demonstrate that this connection facilitates a distinction between QH and QAH states in the presence of a magnetic field. We debunk therefore the widespread belief that these two topological phases of matter cannot be distinguished, since they are both described by a $\mathbb{Z}$ topological invariant. To be more precise, we demonstrate that the QAH topology remains encoded in a peculiar topological quantity, the spectral asymmetry, which quantifies the differences in the number of states between the conduction and valence band. Deriving the effective action of QAH insulators in magnetic fields, we show that the spectral asymmetry is thereby linked to a unique Chern-Simons term which contains the information about the QAH edge states. As a consequence, we reveal that counterpropagating QH and QAH edge states can emerge when a QAH insulator is subjected to an external magnetic field. These helical-like states exhibit exotic properties which make it possible to disentangle QH and QAH phases. Our findings are of particular importance for paramagnetic TIs in which an external magnetic field is required to induce the QAH phase.
A byproduct of the band inversion is the formation of additional extrema in the valence band dispersion at large momenta (the `camelback'). We develop a numerical implementation of the $8 \times 8$ Kane model to investigate signatures of the camelback in (Hg,Mn)Te quantum wells. Varying the quantum well thickness, as well as the Mn-concentration, we show that the class of topologically nontrivial quantum wells can be subdivided into direct gap and indirect gap TIs. In direct gap TIs, we show that, in the bulk $p$-regime, pinning of the chemical potential to the camelback can cause an onset to QH plateaus at exceptionally low magnetic fields (tens of mT). In contrast, in indirect gap TIs, the camelback prevents the observation of QH plateaus in the bulk $p$-regime up to large magnetic fields (a few tesla). These findings allowed us to attribute recent experimental observations in (Hg,Mn)Te quantum wells to the camelback. Although our discussion focuses on (Hg,Mn)Te, our model should likewise apply to other topological materials which exhibit a camelback feature in their valence band dispersion.
Furthermore, we employ the numerical implementation of the $8\times 8$ Kane model to explore the crossover from a 2D QSH to a 3D TI phase in strained HgTe quantum wells. The latter exhibit 2D topological surface states at their interfaces which, as we demonstrate, are very sensitive to the local symmetry of the crystal lattice and electrostatic gating. We determine the classical cyclotron frequency of surface electrons and compare our findings with experiments on strained HgTe.

Over the last decade, the field of topological insulators has become one of the most vivid areas in solid state physics. This novel class of materials is characterized by an insulating bulk gap, which, in two-dimensional, time-reversal symmetric systems, is closed by helical edge states. The latter make topological insulators promising candidates for applications in high fidelity spintronics and topological quantum computing. This thesis contributes to bringing these fascinating concepts to life by analyzing transport through heterostructures formed by two-dimensional topological insulators in contact with metals or superconductors. To this end, analytical and numerical calculations are employed. Especially, a generalized wave matching approach is used to describe the edge and bulk states in finite size tunneling junctions on the same footing.
The numerical study of non-superconducting systems focuses on two-terminal metal/topological
insulator/metal junctions. Unexpectedly, the conductance signals originating from the bulk and
the edge contributions are not additive. While for a long junction, the transport is determined
purely by edge states, for a short junction, the conductance signal is built from both bulk and
edge states in a ratio, which depends on the width of the sample. Further, short junctions show
a non-monotonic conductance as a function of the sample length, which distinguishes the topologically non-trivial regime from the trivial one. Surprisingly, the non-monotonic conductance of the topological insulator can be traced to the formation of an effectively propagating solution, which is robust against scalar disorder.
The analysis of the competition of edge and bulk contributions in nanostructures is extended to transport through topological insulator/superconductor/topological insulator tunneling junctions. If the dimensions of the superconductor are small enough, its evanescent bulk modes
can couple edge states at opposite sample borders, generating significant and tunable crossed
Andreev reflection. In experiments, the latter process is normally disguised by simultaneous
electron transmission. However, the helical edge states enforce a spatial separation of both competing processes for each Kramers’ partner, allowing to propose an all-electrical measurement
of crossed Andreev reflection.
Further, an analytical study of the hybrid system of helical edge states and conventional superconductors in finite magnetic fields leads to the novel superconducting quantum spin Hall effect. It is characterized by edge states. Both the helicity and the protection against scalar disorder of these edge states are unaffected by an in-plane magnetic field. At the same time its superconducting gap and its magnetotransport signals can be tuned in weak magnetic fields, because the combination of helical edge states and superconductivity results in a giant g-factor. This is manifested in a non-monotonic excess current and peak splitting of the dI/dV characteristics as a function of the magnetic field. In consequence, the superconducting quantum spin Hall effect is an effective generator and detector for spin currents.
The research presented here deepens the understanding of the competition of bulk and edge
transport in heterostructures based on topological insulators. Moreover it proposes feasible experiments to all-electrically measure crossed Andreev reflection and to test the spin polarization of helical edge states.

Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion.
They are regarded to be of considerable future use in spintronics and for quantum computation.
Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics.
In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal.
Let us summarize our primary results.
Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region.
We thereby rely on and extend the method of refermionizable points.
Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder.
We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

In this thesis I present results concerning realistic calculations of correlated fermionic many-body systems. One of the main objectives of this work was the implementation of a hybridization expansion continuous-time quantum Monte Carlo (CT-HYB) algorithm and of a flexible self-consistency loop based on the dynamical mean-field theory (DMFT). DMFT enables us to treat strongly correlated electron systems numerically. After the implementation and extensive testing of the program we investigated different problems to answer open questions concerning correlated systems and their numerical treatment.

The hunt for topological materials is one of the main topics of recent research in condensed matter physics. We analyze the 4-band Luttinger model, which considers the total angular momentum \(j = 3/2\) hole states of many semiconductors. Our analysis shows that this model hosts a wide array of topological phases and allows analytical calculations of the related topological surface states. The existence of these surface states is highly desired due to their strong protection against perturbations.
In the first part of the thesis, we predict the existence of either one or two two-dimensional (2D) surface states of topological origin in the three-dimensional (3D) quadratic-node semimetal phase of the Luttinger model, called the Luttinger semimetal phase. We associate the origin of these states with the inverted order of s and p-orbital states in the band structure and approximate chiral symmetry around the node. Hence, our findings are essential for many materials, including HgTe, α-Sn, and iridate compounds. Such materials are often modified with strain engineering by growing the crystal on a substrate with a different lattice constant, which adds a deformation potential to the electrons. While tensile strain is often used to drive such materials into a gapped topological insulator regime, we apply compressive strain to induce a topological semimetal regime. Here, we differentiate between Dirac and Weyl semimetals based on inversion and time-reversal symmetry being simultaneously present or not. One major part of this thesis is the theoretical study of the evolution of the Luttinger semimetal surface states in these topological semimetal phases.
The relative strength of the compressive strain and typical bulk inversion asymmetry (BIA) terms allow the definition of a symmetry hierarchy in the system. The cubic symmetric \(O_h\) Luttinger model is the highest symmetry low-energy parent model. Since the BIA terms in the Weyl semimetal phase are small in most materials, we find a narrow energy and momentum range around the Weyl points where the surface states form Fermi arcs between two Weyl nodes with opposite chirality. Consequently, we see 2D momentum planes between the Weyl points, which can be considered as effective 2D Chern insulators with chiral edge states connecting the valence and conduction band in the bulk gap. Exceeding the range of the BIA terms, the compressive strain becomes dominating, and the system behaves like a Dirac semimetal with two doubly degenerate linear Dirac nodes in the band structure. For energies larger than the compressive strain strength, the quadratic terms in the Luttinger model dominate and surface band structure is indistinguishable from an unperturbed Luttinger semimetal. To conclude this symmetry hierarchy, we analyze the limit of the Luttinger model when the remote \(j = 1/2\)
electron states show a considerable hybridization with the \(j = 3/2\) hole states around the Fermi level. Here, the Luttinger model is not valid anymore and one needs to consider more complicated models, like the 6-band Kane Hamiltonian.
In the second part of this thesis, we analyze theoretically two different setups for s-wave superconductivity proximitized \(j = 3/2\) particles in Luttinger materials under a magnetic field. First, we explore a one-dimensional wire setup, where the intrinsic BIA of inversion asymmetric crystals opens a topological gap in the bulk states. In contrast to wires, modeled by a quadratic dispersion with Rashba or Dresselhaus spin-orbit coupling, we find two topological phase transitions due to the different effects of magnetic fields to \(|j_z| = 3/2\) heavy-hole (HH) and \(|j_z| = 1/2\) light-hole (LH) states. Second, we discuss a two-dimensional Josephson junction setup, where we find Andreev-bound states inside the superconducting gap. Here, the intrinsic spin-orbit coupling of the Luttinger model is sufficient to open a topological gap even in the presence of inversion symmetry. This originates from the hybridization of the light and heavy-hole bands in combination with the superconducting pairing.
Consequently, both setups can form Majorana-bound states at the boundaries of the system.
The existence of these states are highly relevant in the scientific community due to their nonabelian braiding statistics and stability against decoherence, making them a prime candidate for the realization of topological quantum computation. Majorana-bound states form at zero energy and are protected by the topological gap. We predict that our findings of the topological superconductor phase of the Luttinger model are valid for both semimetal and metal phases. Hence, our study is additionally relevant for metallic systems, like p-doped GaAs. This opens a new avenue for the search for topological superconductivity.

Strong correlations caused by interaction in systems of electrons can bring about unusual physical phenomena due to many-body quantum effects that cannot properly be captured by standard electronic structure methods like density functional theory. In this thesis, we apply the state-of-the-art continuous-time quantum Monte Carlo algorithm in hybridization expansion (CT-HYB) for the strongly correlated multi-orbital Anderson impurity model (AIM) to the solution of models of magnetic impurities on metallic surfaces and, via dynamical mean-field theory (DMFT), to the solution of a lattice model, the multi-orbital Hubbard model with Hund's coupling.
A concise introduction to the theoretical background focuses on information directly relevant to the understanding of applied models, methods, and the interpretation of results. It starts with a discussion of the AIM with its parameters and its solution in the path integral formalism, the basis of the CT-HYB algorithm. We consider its derivation and implementation in some detail before reviewing the DMFT approach to correlated lattice models and the interpretation of the single-particle Green's function.
We review two algorithmic developments for the CT-HYB algorithm that help to increase the performance of calculations especially in case of a complex structure of the interaction matrix and allow the precise calculation of self-energies and vertex functions also at intermediate and higher frequencies.
Our comparative analysis of Kondo screening in the cobalt on copper impurity system points out the importance of an accurate interaction matrix for qualitatively correct Kondo temperatures and the relevance of all d-orbitals in that case. Theoretical modeling of cobalt impurities in copper "atomic wires" fails to reproduce variations and partial absence of Kondo resonances depending on the wire size. We analyze the dependence of results on parameters and consider possible reasons for the discrepancy. Different Kondo temperatures of iron adatoms adsorbed on clean or oxygen-reconstructed niobium in the normal state are qualitatively reproduced, with the adsorption distance identified as major factor and implications for the superconducting state pointed out.
Moving on to lattice problems, we demonstrate the connection between Hund's coupling, shown to cause first-order character of the interaction-driven Mott transition at half-filling in the two-orbital Hubbard model, and a phase separation zone ending in a quantum critical point at finite doping. We touch on similarities in realistic models of iron-pnictide superconductors. We analyze the manifestation of the compressibility divergence at the finite-temperature critical points away from half-filling in the eigenbasis of the two-particle generalized susceptibility. A threshold for impurity susceptibility eigenvalues that indicates divergence of the DMFT lattice compressibility and distinguishes thermodynamic stability and instability of DMFT solutions is determined.

Relativistic effects crucially influence the fundamental properties of many quantum materials. In the accelerated reference frame of an electron, the electric field of the nuclei is transformed into a magnetic field that couples to the electron spin. The resulting interaction between an electron spin and its orbital angular momentum, known as spin-orbit coupling (SOC), is hence fundamental to the physics of many condensed matter phenomena. It is particularly important quantitatively in low-dimensional quantum systems, where its coexistence with inversion symmetry breaking can lead to a splitting of spin degeneracy and spin momentum locking. Using the paradigm of Landau Fermi liquid theory, the physics of SOC can be adequately incorporated in an effective single particle picture. In a weak coupling approach, electronic correlation effects beyond single particle propagator renormalization can trigger Fermi surface instabilities such as itinerant magnetism, electron nematic phases, superconductivity, or other symmetry broken states of matter.
In this thesis, we use a weak coupling-based approach to study the effect of SOC on Fermi surface instabilities and, in particular, superconductivity. This encompasses a weak coupling renormalization group formulation of unconventional superconductivity as well as the random phase approximation. We propose a unified formulation for both of these two-particle Green’s function approaches based on the notion of a generalized susceptibility.
In the half-Heusler semimetal and superconductor LuPtBi, both SOC and electronic correlation
effects are prominent, and thus indispensable for any concise theoretical description. The metallic and weakly dispersive surface states of this material feature spin momentum locked Fermi surfaces, which we propose as a possible domain for the onset of unconventional surface superconductivity. Using our framework for the analysis of Fermi surface instability and combining it with ab-initio density functional theory calculations, we analyse the surface band structure of LuPtBi, and particularly its propensity towards Cooper pair formation. We study how the presence of strong SOC modifies the classification of two-electron wave functions as well as the screening of electron-electron interactions. Assuming an electronic mechanism, we identify a chiral superconducting condensate featuring Majorana edge modes to be energetically favoured over a wide range of model parameters.

This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces – pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) – are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample’s valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample’s bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-Ångström spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-Ångström precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 % of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 % of CuPc molecules.