Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Doctoral Thesis (4)
- Bachelor Thesis (1)
- Study Thesis (term paper) (1)
Keywords
- Satellit (4)
- Ablaufplanung (1)
- Automatisches Kalibrieren (1)
- Autonomie (1)
- Conjunction analysis (1)
- CubeSat (1)
- Diagnosesystem (1)
- Energieversorgung (1)
- Entscheidungsfindung (1)
- Erderkundungssatellit (1)
Institute
Sonstige beteiligte Institutionen
Continued reports over the past decades of unknown aerial phenomena (short UAP) have given high relevance to the investigation and research of these. Especially reports by US Navy pilots and official investigations by the US Office of the director of national intelligence have emphasized the value of such efforts. Due to the inherently limited scope of earth based observations, a satellite based instrument for detection of such phenomena may prove especially useful. This paper as such investigates the possible viability of such an instrument on a nano satellite mission.
Die Raumfahrt ist eine der konservativsten Industriebranchen. Neue Entwicklungen von Komponenten und Systemen beruhen auf existierenden Standards und eigene Erfahrungen der Entwickler. Die Systeme sollen in einem vorgegebenen engen Zeitrahmen projektiert, in sehr kleiner Stückzahl gefertigt und schließlich aufwendig qualifiziert werden. Erfahrungsgemäß reicht die Zeit für Entwicklungsiterationen und weitgehende Perfektionierung des Systems oft nicht aus. Fertige Sensoren, Subsysteme und Systeme sind Unikate, die nur für eine bestimme Funktion und in manchen Fällen sogar nur für bestimmte Missionen konzipiert sind. Eine Neuentwicklung solcher Komponenten ist extrem teuer und risikobehaftet. Deswegen werden flugerprobte Systeme ohne Änderungen und Optimierung mehrere Jahre eingesetzt, ohne Technologiefortschritte zu berücksichtigen.
Aufgrund des enormen finanziellen Aufwandes und der Trägheit ist die konventionelle Vorgehensweise in der Entwicklung nicht direkt auf Kleinsatelliten übertragbar. Eine dynamische Entwicklung im Low Cost Bereich benötigt eine universale und für unterschiedliche Anwendungsbereiche leicht modifizierbare Strategie. Diese Strategie soll nicht nur flexibel sein, sondern auch zu einer möglichst optimalen und effizienten Hardwarelösung führen.
Diese Arbeit stellt ein Software-Tool für eine zeit- und kosteneffiziente Entwicklung von Sternsensoren für Kleinsatelliten vor. Um eine maximale Leistung des Komplettsystems zu erreichen, soll der Sensor die Anforderungen und Randbedingungen vorgegebener Anwendungen erfüllen und darüber hinaus für diese Anwendungen optimiert sein. Wegen der komplexen Zusammenhänge zwischen den Parametern optischer Sensorsysteme ist keine
„straightforward" Lösung des Problems möglich. Nur durch den Einsatz computerbasierter Optimierungsverfahren kann schnell und effizient ein bestmögliches Systemkonzept für die gegebenen Randbedingungen ausgearbeitet werden.
Von technischen Systemen wird in der heutigen Zeit erwartet, dass diese stets fehlerfrei funktionieren, um einen reibungslosen Ablauf des Alltags zu gewährleisten. Technische Systeme jedoch können Defekte aufweisen, die deren Funktionsweise einschränken oder zu deren Totalausfall führen können. Grundsätzlich zeigen sich Defekte durch eine Veränderung im Verhalten von einzelnen Komponenten. Diese Abweichungen vom Nominalverhalten nehmen dabei an Intensität zu, je näher die entsprechende Komponente an einem Totalausfall ist. Aus diesem Grund sollte das Fehlverhalten von Komponenten rechtzeitig erkannt werden, um permanenten Schaden zu verhindern. Von besonderer Bedeutung ist dies für die Luft- und Raumfahrt. Bei einem Satelliten kann keine Wartung seiner Komponenten durchgeführt werden, wenn er sich bereits im Orbit befindet. Der Defekt einer einzelnen Komponente, wie der Batterie der Energieversorgung, kann hierbei den Verlust der gesamten Mission bedeuten. Grundsätzlich lässt sich Fehlererkennung manuell durchführen, wie es im Satellitenbetrieb oft üblich ist. Hierfür muss ein menschlicher Experte, ein sogenannter Operator, das System überwachen. Diese Form der Überwachung ist allerdings stark von der Zeit, Verfügbarkeit und Expertise des Operators, der die Überwachung durchführt, abhängig. Ein anderer Ansatz ist die Verwendung eines dedizierten Diagnosesystems. Dieses kann das technische System permanent überwachen und selbstständig Diagnosen berechnen. Die Diagnosen können dann durch einen Experten eingesehen werden, der auf ihrer Basis Aktionen durchführen kann. Das in dieser Arbeit vorgestellte modellbasierte Diagnosesystem verwendet ein quantitatives Modell eines technischen Systems, das dessen Nominalverhalten beschreibt. Das beobachtete Verhalten des technischen Systems, gegeben durch Messwerte, wird mit seinem erwarteten Verhalten, gegeben durch simulierte Werte des Modells, verglichen und Diskrepanzen bestimmt. Jede Diskrepanz ist dabei ein Symptom. Diagnosen werden dadurch berechnet, dass zunächst zu jedem Symptom eine sogenannte Konfliktmenge berechnet wird. Dies ist eine Menge von Komponenten, sodass der Defekt einer dieser Komponenten das entsprechende Symptom erklären könnte. Mithilfe dieser Konfliktmengen werden sogenannte Treffermengen berechnet. Eine Treffermenge ist eine Menge von Komponenten, sodass der gleichzeitige Defekt aller Komponenten dieser Menge alle beobachteten Symptome erklären könnte. Jede minimale Treffermenge entspricht dabei einer Diagnose. Zur Berechnung dieser Mengen nutzt das Diagnosesystem ein Verfahren, bei dem zunächst abhängige Komponenten bestimmt werden und diese von symptombehafteten Komponenten belastet und von korrekt funktionierenden Komponenten entlastet werden. Für die einzelnen Komponenten werden Bewertungen auf Basis dieser Be- und Entlastungen berechnet und mit ihnen Diagnosen gestellt. Da das Diagnosesystem auf ausreichend genaue Modelle angewiesen ist und die manuelle Kalibrierung dieser Modelle mit erheblichem Aufwand verbunden ist, wurde ein Verfahren zur automatischen Kalibrierung entwickelt. Dieses verwendet einen Zyklischen Genetischen Algorithmus, um mithilfe von aufgezeichneten Werten der realen Komponenten Modellparameter zu bestimmen, sodass die Modelle die aufgezeichneten Daten möglichst gut reproduzieren können. Zur Evaluation der automatischen Kalibrierung wurden ein Testaufbau und verschiedene dynamische und manuell schwierig zu kalibrierende Komponenten des Qualifikationsmodells eines realen Nanosatelliten, dem SONATE-Nanosatelliten modelliert und kalibriert. Der Testaufbau bestand dabei aus einem Batteriepack, einem Laderegler, einem Tiefentladeschutz, einem Entladeregler, einem Stepper Motor HAT und einem Motor. Er wurde zusätzlich zur automatischen Kalibrierung unabhängig manuell kalibriert. Die automatisch kalibrierten Satellitenkomponenten waren ein Reaktionsrad, ein Entladeregler, Magnetspulen, bestehend aus einer Ferritkernspule und zwei Luftspulen, eine Abschlussleiterplatine und eine Batterie. Zur Evaluation des Diagnosesystems wurde die Energieversorgung des Qualifikationsmodells des SONATE-Nanosatelliten modelliert. Für die Batterien, die Entladeregler, die Magnetspulen und die Reaktionsräder wurden die vorher automatisch kalibrierten Modelle genutzt. Für das Modell der Energieversorgung wurden Fehler simuliert und diese diagnostiziert. Die Ergebnisse der Evaluation der automatischen Kalibrierung waren, dass die automatische Kalibrierung eine mit der manuellen Kalibrierung vergleichbare Genauigkeit für den Testaufbau lieferte und diese sogar leicht übertraf und dass die automatisch kalibrierten Satellitenkomponenten eine durchweg hohe Genauigkeit aufwiesen und damit für den Einsatz im Diagnosesystem geeignet waren. Die Ergebnisse der Evaluation des Diagnosesystems waren, dass die simulierten Fehler zuverlässig gefunden wurden und dass das Diagnosesystem in der Lage war die plausiblen Ursachen dieser Fehler zu diagnostizieren.
The safety of future spaceflight depends on space surveillance and space traffic management, as the density of objects in Earth orbit has reached a level that requires collision avoidance maneuvers to be performed on a regular basis to avoid a mission or, in the context of human space flight, life-endangering threat. Driven by enhanced sensor systems capable of detecting centimeter-sized debris, megaconstellations and satellite miniaturization, the space debris problem has revealed many parallels to the plastic waste in our oceans, however with much less visibility to the eye. Future catalog sizes are expected to increase drastically, making it even more important to detect potentially dangerous encounters as early as possible.
Due to the limited number of monitoring sensors, continuous observation of all objects is impossible, resulting in the need to predict the orbital paths and their uncertainty via models to perform collision risk assessment and space object catalog maintenance. For many years the uncertainty models used for orbit determination neglected any uncertainty in the astrodynamic force models, thereby implicitly assuming them to be flawless descriptions of the true space environment. This assumption is known to result in overly optimistic uncertainty estimates, which in turn complicate collision risk analysis.
The keynote of this doctoral thesis is to establish uncertainty realism for low Earth orbiting satellites via a physically connected quantification of the dominant force model uncertainties, particularly multiple sources of atmospheric density uncertainty and orbital gravity uncertainty.
The resulting process noise models are subsequently integrated into classical and state of the art orbit determination algorithms. Their positive impact is demonstrated via numerical orbit determination simulations and a collision risk assessment study using all non-restricted objects in the official United States space catalogs. It is shown that the consideration of atmospheric density uncertainty and gravity uncertainty significantly improves the quality of the orbit determination and thus makes a contribution to future spaceflight safety by increasing the reliability of the uncertainty estimates used for collision risk assessment.
Der Betrieb von Satelliten wird sich in Zukunft gravierend ändern. Die bisher ausgeübte konventionelle Vorgehensweise, bei der die Planung der vom Satelliten auszuführenden Aktivitäten sowie die Kontrolle hierüber ausschließlich vom Boden aus erfolgen, stößt bei heutigen Anwendungen an ihre Grenzen. Im schlimmsten Fall verhindert dieser Umstand sogar die Erschließung bisher ungenutzter Möglichkeiten. Der Gewinn eines Satelliten, sei es in Form wissenschaftlicher Daten oder der Vermarktung satellitengestützter Dienste, wird daher nicht optimal ausgeschöpft.
Die Ursache für dieses Problem lässt sich im Grunde auf eine ausschlaggebende Tatsache zurückführen: Konventionelle Satelliten können ihr Verhalten, d.h. die Folge ihrer Tätigkeiten, nicht eigenständig anpassen. Stattdessen erstellt das Bedienpersonal am Boden - vor allem die Operatoren - mit Hilfe von Planungssoftware feste Ablaufpläne, die dann in Form von Kommandosequenzen von den Bodenstationen aus an die jeweiligen Satelliten hochgeladen werden. Dort werden die Befehle lediglich überprüft, interpretiert und strikt ausgeführt. Die Abarbeitung erfolgt linear. Situationsbedingte Änderungen, wie sie vergleichsweise bei der Codeausführung von Softwareprogrammen durch Kontrollkonstrukte, zum Beispiel Schleifen und Verzweigungen, üblich sind, sind typischerweise nicht vorgesehen. Der Operator ist daher die einzige Instanz, die das Verhalten des Satelliten mittels Kommandierung, per Upload, beeinflussen kann, und auch nur dann, wenn ein direkter Funkkontakt zwischen Satellit und Bodenstation besteht. Die dadurch möglichen Reaktionszeiten des Satelliten liegen bestenfalls bei einigen Sekunden, falls er sich im Wirkungsbereich der Bodenstation befindet. Außerhalb des Kontaktfensters kann sich die Zeitschranke, gegeben durch den Orbit und die aktuelle Position des Satelliten, von einigen Minuten bis hin zu einigen Stunden erstrecken. Die Signallaufzeiten der Funkübertragung verlängern die Reaktionszeiten um weitere Sekunden im erdnahen Bereich. Im interplanetaren Raum erstrecken sich die Zeitspannen aufgrund der immensen Entfernungen sogar auf mehrere Minuten. Dadurch bedingt liegt die derzeit technologisch mögliche, bodengestützte, Reaktionszeit von Satelliten bestenfalls im Bereich von einigen Sekunden.
Diese Einschränkung stellt ein schweres Hindernis für neuartige Satellitenmissionen, bei denen insbesondere nichtdeterministische und kurzzeitige Phänomene (z.B. Blitze und Meteoreintritte in die Erdatmosphäre) Gegenstand der Beobachtungen sind, dar. Die langen Reaktionszeiten des konventionellen Satellitenbetriebs verhindern die Realisierung solcher Missionen, da die verzögerte Reaktion erst erfolgt, nachdem das zu beobachtende Ereignis bereits abgeschlossen ist.
Die vorliegende Dissertation zeigt eine Möglichkeit, das durch die langen Reaktionszeiten entstandene Problem zu lösen, auf. Im Zentrum des Lösungsansatzes steht dabei die Autonomie. Im Wesentlichen geht es dabei darum, den Satelliten mit der Fähigkeit auszustatten, sein Verhalten, d.h. die Folge seiner Tätigkeiten, eigenständig zu bestimmen bzw. zu ändern. Dadurch wird die direkte Abhängigkeit des Satelliten vom Operator bei Reaktionen aufgehoben. Im Grunde wird der Satellit in die Lage versetzt, sich selbst zu kommandieren.
Die Idee der Autonomie wurde im Rahmen der zugrunde liegenden Forschungsarbeiten umgesetzt. Das Ergebnis ist ein autonomes Planungssystem. Dabei handelt es sich um ein Softwaresystem, mit dem sich autonomes Verhalten im Satelliten realisieren lässt. Es kann an unterschiedliche Satellitenmissionen angepasst werden. Ferner deckt es verschiedene Aspekte des autonomen Satellitenbetriebs, angefangen bei der generellen Entscheidungsfindung der Tätigkeiten, über die zeitliche Ablaufplanung unter Einbeziehung von Randbedingungen (z.B. Ressourcen) bis hin zur eigentlichen Ausführung, d.h. Kommandierung, ab. Das Planungssystem kommt als Anwendung in ASAP, einer autonomen Sensorplattform, zum Einsatz. Es ist ein optisches System und dient der Detektion von kurzzeitigen Phänomenen und Ereignissen in der Erdatmosphäre.
Die Forschungsarbeiten an dem autonomen Planungssystem, an ASAP sowie an anderen zu diesen in Bezug stehenden Systemen wurden an der Professur für Raumfahrttechnik des Lehrstuhls Informatik VIII der Julius-Maximilians-Universität Würzburg durchgeführt.
In this thesis, a model of the dynamics during the landing phase of an interplanetary lander mission is developed in a 3 DOF approach with the focus lying on landing by propulsive means. Based on this model, a MATLAB simulation was developed with the goal of enabling an estimation of the performance and especially the required fuel amount of a propulsive landing system on Venus. This landing system is modeled to be able to control its descent using thrusters and to perform a stable landing at a specified target location. Using this simulation, the planetary environments of Mars and Venus can be simulated and the impact of wind, atmospheric density and gravity as well as of using different thrusters on the fuel consumption and landing abilities of the simulated landing system can be investigated. The comparability of these results with the behavior of real landing systems is validated in this thesis by simulating the Powered Descent Phase of the Mars 2020 mission and comparing the results to the data the Mars 2020 descent stage has collected during this phase of its landing. Further, based on the simulation, the minimal necessary fuel amount for a successful landing on Venus has been determined for different scenarios. The simulation along with these results are a contribution to the research of this thesis’s supervisor Clemens Riegler, M.Sc., who will use them for a comparison of different types of landing systems in the context of his doctoral thesis.