Refine
Has Fulltext
- yes (52)
Is part of the Bibliography
- yes (52)
Year of publication
Document Type
- Doctoral Thesis (52)
Keywords
- Tissue Engineering (23)
- In vitro (4)
- Biomaterial (3)
- Bioreaktor (3)
- Gewebekultur (3)
- Implantat (3)
- Kollagen (3)
- Mundschleimhaut (3)
- Regenerative Medizin (3)
- Stammzelle (3)
Institute
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (31)
- Graduate School of Life Sciences (27)
- Fakultät für Biologie (4)
- Theodor-Boveri-Institut für Biowissenschaften (4)
- Institut für Anatomie und Zellbiologie (1)
- Institut für Funktionsmaterialien und Biofabrikation (1)
- Julius-von-Sachs-Institut für Biowissenschaften (1)
- Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie (1)
- Klinik und Poliklinik für Thorax-, Herz- u. Thorakale Gefäßchirurgie (1)
- Medizinische Fakultät (1)
Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation.
In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM.
Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused.
Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31.
For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis.
Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis.
Gegenstand dieser Arbeit war die Etablierung eines dreidimensionalen in vitro Tumormodells, welches ein orales in vivo Plattenepithelkarzinom nachbilden sollte. Dabei standen Aufbau, Reproduzierbarkeit und Reliabilität an vorderster Stelle. Als Zellquelle sollten sowohl Tumorzellen aus den Zelllinien FaDu, HLaC79 und HLaC79 Clone 1 als auch primäre Zellen aus karzinogenem Primärgewebe dienen. Als Referenz wurden dabei stets Modelle aus primär isolierten Zellen herangezogen, die ein Äquivalent zur gesunden Mundschleimhaut bildeten. Während der Isolationsvorgang von pathologischen Zellen primärer Plattenepithelkarzinomen aus der Mundhöhle und dem Pharynx aufgrund zahlreicher Kontaminationen und Stagnationen des Zellwachstums keinen Erfolg erzielte und der Versuch eingestellt wurde, war es mit den Tumorzelllinien FaDu und HLaC79 möglich, dreidimensionale in vitro Tumormodelle herzustellen. Ihre Malignität wurde durch die besonderen histologischen Architekturstörungen wie die geringere Epitheldicke, das Fehlen einer Parakeratinisierung im Stratum corneum und die Invasion von Tumorzellen in die Submukosa verdeutlicht. Um einen eindeutigen Vergleich zu den Mukosaäquivalenten zu ziehen, fand eine Immunhistochemie mit unterschiedlichen Markern statt, die vor allem den gestörten Epithelaufbau des Tumormodells verdeutlichte. Als Maß für die Zell-Zell-Kontakte, die im Laufe der Kultivierung entstanden, diente der transepitheliale elektrische Widerstand. Die Behandlung der Tumorzellen und Tumormodelle mit dem klinisch bewährten Zytostatikum Paclitaxel und dem neuen Polyether-Antibiotikum Salinomycin erzielte vor allem in der zweidimensionalen Kultivierung große Erfolge. Hier wurde verdeutlicht, dass Paclitaxel toxisch auf die HLaC79 Tumorzellen wirkt, während die paclitaxelresistenten HLaC79 Clone 1 Tumorzellen immun gegen dieses Medikament sind. Salinomycin hingegen sorgte für eine Verringerung der Zellviabilität bei beiden Zelllinien. Die histologischen Untersuchungen nach der 24-stündigen Medikamentenapplikation mit Paclitaxel bei den Tumormodellen zeigten keine signifikanten Unterschiede, während der transepitheliale elektrische Widerstand stieg und auf eine verstärkte Barriere nach Paclitaxelgabe schließen ließ.
Bisherige per Tissue Engineering hergestellte Testsysteme der Mundschleimhaut basieren in der Regel auf allogenen und teils dysplastischen Keratinozyten. Dies schmälert die Aussagekraft der gewonnenen Ergebnisse hinsichtlich des Anspruchs, Nativgewebe bestmöglich nachzubilden.
In der vorliegenden Arbeit sollte daher ein am Lehrstuhl für Tissue Engineering und Regenerative Medizin entwickeltes Protokoll zur Herstellung dreidimensionaler epidermaler Oralmukosaäquivalente auf Basis autologer Keratinozyten auf seine Eigenschaften und Einsatzmöglichkeit als in-vitro Testsystem untersucht werden.
Nach erfolgreicher Isolierung und Kultivierung im Monolayer konnten insgesamt 420 Modelle zu drei verschiedenen Zeitpunkten (Passagen) aufgebaut werden. Die Untersuchung von Histologie, Viabilität und Barrierefunktion mittels MTT, TEER und Natriumfluoresceinpermeabilität konnte einen suffizienten Aufbau von verhorntem, mehrschichtigen oralen Plattenepithel nachweisen. Gleichzeitig konnte eine Abnahme der Epithelqualität mit steigendem Keratinozytenalter festgestellt werden.
Eine sich anschließende Untersuchung von 14 Cytokeratinen sowie Apoptosemarkern per effizienzkorrigierter und normalisierter RT-qPCR konnte die Überlegenheit der dreidimensionalen autologen Oralmukosaäquivalente gegenüber der zweidimensionalen Monolayerkultur auf Genebene zeigen.
Bevor ein zellbasiertes GTMP erstmalig beim Menschen angewendet werden kann, müssen verschiedene notwendige nicht-klinische Studien durchgeführt werden. Wichtig ist hier u.a. die Untersuchung der Biodistribution im Tiermodel. Diese umfasst die Verteilung, das Engraftment, die Persistenz, die Eliminierung und gegebenenfalls die Expansion der humanen Zellen in verschiedenen Organen, meistens im Mausmodel. Deshalb wurde eine qPCR-basierte Analysenmethode entwickelt, mit der humane genomische DNA innerhalb von muriner genomischer DNA bestimmt werden kann, und entsprechend den regulatorischen Richtlinien der European Medicines Agency und des International Council for Harmonisation validiert. Anschließend wurde diese Methode innerhalb einer präklinischen worst-case Szenario Biodistributionsstudie angewendet. Das Ziel dieser Studie war die Untersuchung des Biodistributionsprofils von genetisch modifizierten Blood Outgrowth Endothelial Cells von Hämophilie A Patienten 24 Stunden und sieben Tage nach intravenöser Applikation einer Dosis von 2x106 Zellen. Die Isolation, genetische Modifikation und die Expansion der Zellen sollte entsprechend den Richtlinien der Guten Herstellungspraxis durchgeführt werden. Hierbei ist die Auswahl und Anwendung geeigneter und essentieller Rohstoffe wichtig. Gleichermaßen ist die Durchführung einer definierten Qualitätskontrollstrategie notwendig und die Patientenzellen sollten nur innerhalb von nicht-klinischen Studien eingesetzt werden, wenn alle Akzeptanzkriterien erfüllt wurden. Die Validierung der qPCR-Methode zeigte eine hohe Genauigkeit, Präzision und Linearität innerhalb des Konzentrationsintervalls von 1:1x103 bis 1:1x106 humanen zu murinen Genomen. Bei Anwendung dieser Methode für die Biodistributionsstudie konnten nach 24 Stunden humane Genome in vier der acht untersuchten Mausorgane bestimmt werden. Nach sieben Tagen konnten in keinem der acht Organe humane Genome nachgewiesen werden...
Critical size bone defects and nonunion fractures remain difficult to treat. Although cell‐loaded bone substitutes have improved bone ingrowth and formation, the lack of methods for achieving viability and the uniform distribution of cells in the scaffold limits their use as bone grafts. In addition, the predominant mechanical stimulus that drives early osteogenic cell maturation has not been clearly identified. Further, it is challenging to evaluate mechanical stimuli (i.e., deformation and fluid–flow-induced shear stress) because they are interdependent. This thesis compares different mechanical stimuli applied to cell-seeded scaffolds to develop bone grafts efficiently for the treatment of critical size bone defects. It also seeks to understand how deformation strain and interstitial fluid–flow-induced shear stress promote osteogenic lineage commitment. In this thesis, different scaffolds were seeded with primary human bone marrow mesenchymal stem cells (BM-MSCs) from different donors and subjected to static and dynamic culture conditions. In contrast with the static culture conditions, homogenous cell distributions were accomplished under dynamic culture conditions. Additionally, the induction of osteogenic lineage commitment without the addition of soluble factors was observed in the bioreactor system after one week of cell culture. To determine the role of mechanical stimuli, a bioreactor was developed to apply mechanical deformation force to a mesenchymal stem sell (MSC) line (telomerase reverse transcriptase (TERT)) expressing a strain-responsive AP-1 luciferase reporter construct on porous scaffolds. Increased luciferase expression was observed in the deformation strain compared with the shear stress strain. Furthermore, the expression of osteogenic lineage commitment markers such as osteonectin, osteocalcin (OC), osteopontin, runt-related transcription factor 2 (RUNX2), alkaline phosphate (AP), and collagen type 1 was significantly downregulated in the shear stress strain compared with the deformation strain. These findings establish that the deformation strain was the predominant stimulus causing skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. Finally, these findings were used to develop a bioreactor in vitro test system in which the effect of medication on osteoporosis could be tested. Primary human BM-MSCs from osteoporotic donors were subjected to strontium ranelate (an osteoporotic drug marketed as Protelos®). Increased expression of collagen type 1 and calcification was seen in the drugtreated osteoporotic stem cells compared with the nondrug-treated osteoporotic stem cells. Thus, this bioreactor technology can easily be adapted into an in vitro osteoporotic drug testing system.
Gonorrhea is the second most common sexually transmitted infection worldwide and is caused by Gram-negative, human-specific diplococcus Neisseria gonorrhoeae. It colonizes the mucosal surface of the female reproductive tract and the male urethra. A rapid increase in antibiotic resistance makes gonorrhea a serious threat to public health worldwide. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are not able to recapitulate all the features of infection. Therefore, a realistic in vitro cell culture model is urgently required for studying the gonorrhea infection. In this study, we established and characterized three independent 3D tissue models based on the porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. The histological, immunohistochemical, and ultra-structural analysis showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in the human host including the formation of epithelial monolayer, underlying connective tissue, mucus production, tight junction (TJ), and microvilli. In addition, functional analysis such as transepithelial electrical resistance (TEER) and barrier permeability indicated high barrier integrity of the cell layer. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results showed disruption of TJs and growing the interleukins production in response to the infection, which depends on the type of strain and cell. In addition, the 3D tissue models supported bacterial survival, which provided an appropriate in vitro model for long-term infection study. This could be mainly because of the high resilience of the 3D tissue models based on the SIS scaffold to the infection in terms of alteration in permeability, cell destruction, and bacterial transmigration.
During gonorrhea infection, a high level of neutrophils migrates to the site of infection. The studies also showed that N. gonorrhoeae can survive or even replicate inside the neutrophils. Therefore, studying the interaction between neutrophils and N. gonorrhoeae is substantially under scrutiny. For this purpose, we generated a 3D tissue model by triple co-culturing of human primary fibroblast cells, human colorectal carcinoma cells, and human umbilical vein endothelial cells. The tissue model was subsequently infected by N. gonorrhoeae. A perfusion-based bioreactor system was employed to recreate blood flow in the side of endothelial cells and consequently study human neutrophils transmigration to the site of infection. We observed neutrophils activation upon the infection. Furthermore, we demonstrated the uptake of N. gonorrhoeae by human neutrophils and reverse transmigration of neutrophils to the basal side carrying N. gonorrhoeae. In summary, the introduced 3D tissue models in this research represent a promising tool to investigate N. gonorrhoeae infections under close-to-natural conditions.
Degenerative Bandscheibenerkrankungen wie Protrusionen oder vorgefallenes Nukle-usgewebe führen häufig zu chronischen Schmerzen und schränken die Bewegungsmo-bilität sehr ein. Operative Behandlungsmöglichkeiten wie die Nukleotomie oder die Fusion von Wirbelkörpern stellen traumatische Eingriffe in das komplexe System der Wirbelsäule dar. Biologische Verfahren, durch die eine Regeneration des geschädigten Gewebes erzielt werden kann, sind klinisch bisher nicht etabliert.
Ziel dieser Arbeit ist die Entwicklung, Herstellung und Testung regenerativer azellulä-rer Implantatmatrices auf der Basis von Kollagen Typ I, die den degenerierten Nukleus pulposus ersetzen sollen. Insbesondere eine Höhenminderung der Bandscheibe kann zu Anschlussdegenerationen benachbarter Segmente führen. Dies soll durch die Implan-tatmatrix ausgeglichen werden. Nach der Konstruktion und dem Bau eines Reaktors aus dem Hochleistungskunststoff Polytetrafluorethylen (PTFE), der allen Anforderungen eines CE-Konformitätsbewertungsverfahrens entspricht, wird eine hoch verdichtete Kollagen Typ I Matrix mit einer Stärke von 1 mm hergestellt. Diese kann über den Pro-zess der Lyophilisation auf 0,6 mm weiter reduziert werden. Es gelingt, die Matrix in einer Edelstahlhülse zu platzieren, über die mit Hilfe eines passgenauen Führungssta-bes die endoskopische Implantation in die Nukleuskavität erfolgen soll. Im Rahmen der Interkorporellen Fusionstage des Diakonie Klinikums Stuttgart wird das operative Handling an einem humanem Präparat simuliert. Die Implantation erfolgt offen über einen transforaminalen Zugang in zwei nukleotomierte Segmente der lumbalen Wir-belsäule. Die anwesenden Wirbelsäulenchirurgen beurteilen die Möglichkeit der endo-skopischen Applikation als positiv und machbar.
Durch den Zusatz des Polysaccharids Hyaluronsäure gelingt es, die Quelleigenschaften der hoch verdichteten Matrix zu steigern, so dass diese wie natives Nukleusgewebe in der Lage ist, Flüssigkeit in Ruhe wieder aufzunehmen. Das Quellpotential und die da-mit einhergehende Volumenzunahme nach Kompression sind für ein Nukleusersatzma-terial essentiell. Die hier verwendete Hyaluronsäure geht jedoch im offenen System der in vitro Inkubation innerhalb von 11 Tagen verloren. Dennoch zeigen sich weitere Vorteile gegenüber der Matrix ohne Hyaluronsäure-Zusatz innerhalb der Testungen heraus. Diese sind neben dem erhöhten Quellpotential z. B. eine gesteigerte Rate der Zellproliferation der verwendeten bovinen und humanen Bandscheibenzellen (bBSZ und hBSZ) sowie humanen mesenchymalen Stammzellen (hMSC), die über die Be-stimmung der Zellzahl und Viabilität ermittelt wird. Zudem zeigt sich eine gesteigerte mechanische Stabilität, die über die Spannungs-Kompressions-Messungen evaluiert wird. Über Lebend-/ Totfärbungen und Zytotoxizitätstests an Monolayerkulturen kann zudem nachgewiesen werden, dass die notwendige Endsterilisation durch γ-Bestrahlung zu keinen zytotoxischen Veränderungen der Matrix führt. Da die verdich-tete Implantatmatrix azellulär als Medizinprodukt der Klasse III eingesetzt werden soll, wird als ergänzende Matrix zur Füllung kleinster Hohlräume die zunächst flüssige ChondroFillerliquid Matrix (ein Knorpelersatzmaterial der Firma Amedrix GmbH, Esslin-gen) durch den Zusatz von Hyaluronsäure modifiziert und in der Zellkultur getestet. Da es sich hierbei um ein Zweikammerspritzensystem handelt, ist die Verwendung von Additiva wie z. B. Stammzellen technisch möglich. Die Ermittlung der maximalen Inku-bationszeit von Zellen in verschieden konzentrierten hyperosmotischen Neutralisations-lösungen ergibt eine Dauer von 5 min, bis irreversible Zellschäden auftreten. In Migra-tionsversuchen kann gezeigt werden, dass die ChondroFillerliquid Matrix als Konektiv zwischen nativem Nukleusgewebe und verdichteter Implantatmatrix fungiert. Des Wei-teren synthetisieren bBSZ, hBSZ und hMSC sulfatierte Glykosaminoglykane und behal-ten dabei ihr charakteristisches Genexpressionsprofil. Die chondrogene Differenzie-rung durch die Verwendung eines chondrogenen Differenzierungsmediums gelingt bei den hMSC bereits nach einer Kultivierungsdauer von 14 d. Die Zellverteilung in den Implantatmatrices und deren Morphologie entspricht dem nativen Nukleusgewebe. Die biomechanische Testung an einem international anerkannten Modellsystem für humane Wirbelsäulen – der Kalbswirbelsäule – ergibt, dass die Nukleotomie zu einer Erhöhung des Range of Motion (RoM) in alle Richtungen nach Flexion/Extension, Seit-neigung rechts/links und axiale Rotation rechts/links sowie zu einer Höhenreduktion des Segments im Vergleich zum Intaktzustand führt. Nach der Implantation der ver-dichteten Implantatmatrix wird der RoM deutlich reduziert. Das Segment weist dadurch eine hohe Steifigkeit ähnlich dem Intaktzustand auf. Die Höhenreduktion kann durch die Implantation beinahe vollständig wieder ausgeglichen werden. Im Rahmen der zyklischen Dauerbelastungen treten jedoch Implantatextrusionen auf. Zudem nimmt die Steifigkeit deutlich ab, der RoM hingegen wieder zu. Da das bovine Modell jedoch nicht der in vivo Situation entspricht und beispielsweise eine zunehmende In-tegration des Implantats durch Einwachsen nicht ermöglicht, ist die hohe Extrusionsra-te als nicht realistisch zu werten. Klinische Studien am Tier und Mensch müssen zeigen, inwieweit derartige Extrusionen ohne die Verwendung eines Anulusverschlußsystems auftreten.
Im Rahmen der vorliegenden Arbeit ist es gelungen, einen geeigneten Reaktor zu ent-wickeln und mit diesem eine biokompatible, stabile und quellfähige Matrix herzustel-len, die den Höhenverlust nach einer Nukleotomie auszugleichen vermag. Die modifi-zierte ChondroFillerliquid Matrix stellt eine ideale Ergänzung dar, da über diese Zellen oder andere Additiva verabreicht werden können und deren konektive Wirkung die Zellbesiedlung der azellulären Matrix begünstigt.
Durch Methoden des Tissue Engineerings hergestellte dreidimensionale Hautäquivalente bilden die native humane Haut hinsichtlich ihrer histologischen Architektur, zellulären Zusammensetzung und metabolischen Aktivität ab. Diese Gewebe eignen sich daher als zellbasierte Wundauflagen für großflächige Hautdefekte oder als In-vitro-Testsysteme für den Ersatz von Tierversuchen. Bei bisherigen Hautäquivalenten fehlt jedoch ein funktionelles Blutgefäßsystem. Wird solch ein Gewebe als Implantat eingesetzt, führt das Fehlen von Blutgefäßen zu einer unzureichenden Versorgung mit Nährstoffen und zur Nekrose. Neben dieser klinischen Limitation ist auch das Anwendungsspektrum als In-vitro-Testsystem begrenzt. Bei nicht vaskularisierten Hautmodellen kann eine transdermale Penetration von Substanzen nicht akkurat abgeschätzt werden, da die zusätzliche Barriere, welche die gefäßauskleidenden Endothelzellen bilden, nicht enthalten ist. In Studien zur Integration eines Gefäßsystems in Hautäquivalente konnte bislang lediglich gezeigt werden, dass sich Endothelzellen zu gefäßartigen Strukturen zusammenlagern. Die Bildung von funktionellen perfundierbaren Gefäßen in einem in vitro generierten Hautäquivalent ist bisher jedoch noch nicht belegt. Entsprechend ist eine direkte Anastomose mit dem Blutkreislauf eines Patienten bei einem klinischen Einsatz als Hautimplantat nicht möglich. Bei einer Anwendung in In-vitro-Studien ist zudem das Gefäßsystem experimentell nicht zugänglich.
In der vorliegenden Arbeit kann durch die Kombination einer biologischen, vaskularisierten Trägerstruktur (BioVaSc) mit einem neu entwickelten Bioreaktorsystems, ein Hautäquivalent mit einem perfundierbaren Gefäßsystem hergestellt werden. Die Generierung dieser sogenannten SkinVaSc erfolgt über die Besiedlung der BioVaSc mit humanen Keratinozyten (hEK) und Fibroblasten. Parallel dazu werden die eingebetteten Gefäßstrukturen der BioVaSc mit humanen mikrovaskulären Endothelzellen (hDMEC) rebesiedelt. Durch eine Anastomose zwischen den Gefäßen der BioVaSc und dem Bioreaktorsystem ist eine Perfusion mit physiologisch, gepulsten Drücken zwischen 80 und 120 mmHG möglich. Optimale Kulturbedingungen für die Haut- zellen können ferner durch zwei Kulturmodi generiert werden. Zur optimalen Versorgung der hEK innerhalb einer Proliferationsphase, die sich an die Zellaussaat anschließt, erfolgt eine kontinuierliche Versorgung der Oberfläche der SkinVaSc mit Medium. Der zweite Modus stimuliert die Differenzierung der hEK durch eine Kultivierung des Modells an der Grenzfläche zwischen Luft und Medium.
Nach einer vierzehntägigen Kultivierung der SkinVaSc an der Luft Medium Grenzfläche lässt sich die Bildung einer hautspezifischen histologischen Architektur durch Hämalaun/Eosin und immunhistologische Färbungen belegen. Eine natürlich differenzierte Epidermis wird durch eine Basalmembran, die Kollagen Typ IV und Laminin 5 enthält von einen dermalen Teil getrennt. Die Dermale-Epidermale-Verbindung erscheint durch die Mikrostrukturierung der BioVaSc wellenförmig. Damit bildet die SkinVaSc die papillare Struktur der nativen humanen Haut ab. Innerhalb des dermalen Anteils können zudem Gefäßstrukturen ausgemacht werden. Die Innenseite der Gefäße sind durch eine Schicht aus hDMEC ausgekleidet, die endothelzellspe-
zifische Oberflächenmarker wie "platelet endothelial cell adhesion molecule 1“ und "von Willebrand Faktor“ aufweisen.
Eine zerstörungsfreie Überwachung der SkinVaSc hinsichtlich der epidermalen Differenzierung ist durch eine integrierte Sensortechnologie auf Basis der Impedanz-spektroskopie möglich. Dabei erlaubt ein entwickeltes mathematisches Modell die Extraktion von biologisch relevanten Informationen aus Impedanzspektren in einem Frequenzbereich zwischen 1 Hz und 100 kHz. Innerhalb dieser Studien ließ sich zeigen, dass die epidermale Differenzierung zu einer signifikanten Steigerung des ohmschen Widerstandes von 245,3 Ohm*cm2 zu 1108,1 Ohm*cm2 führt. Gleichzeitig sinkt die zelluläre Kapazität von 131,5µF/cm2 auf 5,4µF/cm2 ab. Durch diese Parameter
ist es möglich die epidermale Barriere zerstörungsfrei über die Kultivierungszeit zu überwachen.
Das Gefäßsystem der SkinVaSc ermöglicht es mehr dermatologische Fragestellungen in vitro zu untersuchen und damit Tierversuche zu ersetzen. Zudem kann auf Basis der SkinVaSc ein vaskularisiertes Hautimplantat entwickelt werden, das es ermöglicht tiefe Hautverletzungen zu behandeln.
Despite advancements of modern medicine, the number of patients with the the end-stage kidney disease keeps growing, and surgical procedures to establish and maintain a vascular access for hemodialysis are rising accordingly. Surgical access of choice remains autogenous arteriovenous fistula, whereas approach “fistula first at all costs” leads to failure in certain subgroups of patients. Modern synthetic vascular grafts fail to deliver long-term results comparable with AV fistula. With all that in mind, this work has an aim of developing a new alternative vascular graft, which can be used for hemodialysis access using the methods of TE, especially electrospinning technique. It is hypothesized that electrospun scaffold, made of PCL and collagen type I may assemble mechanical properties similar to native blood vessels. Seeding such electrospun scaffolds with human microvascular endothelial cells (hmvECs) and preconditioning with shear stress and continuous flow might achieve sufficient endothelial lining being able to resist acute thrombosis. One further topic considered on-site infections, which represents one of the most spread complications of dialysis therapy due to continuous needle punctures. The main hypothesis was that during electrospinning process, polymers can be blended with antibiotics with the aim of producing scaffolds with antimicrobial properties, which could lead to reducing the risk of on-site infection on one side, while not affecting the cell viability.
Trotz hochmoderner Technologien und ausgefeilter therapeutischer und rekonstruktiver chirurgischer Heilungsmethoden beträgt die 5-Jahres Überlebensrate bei der Diagnose PECA der Mundhöhle im Durchschnitt auch im Jahre 2017 nur 55 % und die Heilungsmethoden haben sich in den letzten drei Jahrzehnten kaum verbessert. Umso wichtiger ist es deshalb, die Forschung voranzutreiben und ein aussagekräftiges Tumormodell zu etablieren, das bei der Entwicklung neuer Therapieansätze schnell und sicher gute Ergebnisse liefert.
In dieser Studie soll mit Hilfe des Tissue Engineering (TE) ein in gesunder Mundschleimhaut (MSH) integriertes 3D-Tumormodell generiert werden, welches bestmöglich die Analyse pathologischer Mechanismen im Tumorzentrum, sowie im Randbereich von gesundem und erkranktem Gewebe, und auch die Analyse der Auswirkungen neuartiger Chemotherapeutika auf gesunde und maligne Zellen in direkter Nachbarschaft ermöglicht – ohne Tierversuche. In der Konsequenz könnte ein erheblicher Fortschritt mit höheren Erfolgsaussichten der Therapieansätze erzielt werden.
Es wird ein Tumormodell generiert, in dem auf Basis eines gesunden MSH-Modells Tumorzellen eingebracht werden, um - genauso, wie die Tumorentstehung in vivo von statten gehen würde – Tumorentstehung und Tumorwachstum in der Umgebung von gesunder MSH analysieren zu können. Das Modell basiert dabei auf einer Matrix aus dezellularisierter, porciner, small-intestinal-submucosa (SIS/MUC), die mit primären Fibroblasten, primären Keratinozyten und Tumorzellen der Tumorzelllinie FaDu besiedelt wird. Eine Besonderheit der FaDu-Zellen ist die vorangegangene Transduktion mit dem Lentivirus RFP – um die eingewanderten Zellen von gesunden Zellen unterscheiden zu können. Der Vorgang der Transduktion war gelungen und es konnte eine Fluoreszenz der noch in Zellkulturschalen kultivierten Zellen erzielt werden. Allerdings waren die fluoreszierenden Zellen in den fixierten Schnitten nicht mehr nachweisbar.
Zur Generierung eines Tumormodelles wurden auf Basis eines OMÄ drei unterschiedliche Applikationsformen zur Integration von Tumorzellen getestet. Die Integration von Tumorzellen fand in Form von Spots, Sphäroiden oder Tumorzellgemischen (prim. Keratinozyten/FaDu-Zellen) in zuvor kultivierte gesunde OMÄ statt. Dabei sollte das Applizieren von Spots oder Sphäroiden das Tumorzellwachstum auch in der Umgebung von gesundem Gewebe initiieren. Dies würde die Möglichkeit schaffen, auch in vitro, gesundes neben pathologischem Gewebe und den Übergang dazu genau analysieren zu können.
Es sollen sowohl die optimale Konzentration der Tumorzellen, welche für die Entstehung von Tumoren nötig ist, als auch die geeignetste Applikationsmethode eruiert werden, um optimale Tumormodelle zuverlässig reproduzierbar ansetzen zu können. Die Modelle wurden histologisch und immunhistochemisch analysiert und die Ergebnisse mit ermittelten TEER-Werte in Korrelation gesetzt.
In dieser Arbeit konnte mit der Applikation von Spots oder Sphäroiden kein suffizientes Tumorwachstum in Umgebung von gesunder MSH erzielt werden. Die Zellen lagen ohne Reaktion des angrenzenden Stratum corneums auf der zu stark ausgeprägten Hornschicht der OMÄ auf und es war keine Einwanderung in das darunterliegende Gewebe möglich.
Allerdings ist es gelungen, durch Applikation eines Zellgemisches variierender Mischungsverhältnisse von primären Keratinozyten und Tumorzellen der Zelllinie FaDu ein 3D-Tumorwachstum unterschiedlicher Malignitätsstufen zu initiieren. Je kleiner das Mischungsverhältnis und je höher in der Konsequenz die Anzahl der FaDu-Tumorzellen, desto ausgeprägter waren die morphologischen Anzeichen einer Tumorbildung. Abhängig vom Mischungsverhältnis war dabei die Ausprägung des Tumors. Auch wenn dadurch keine Kombination von gesundem und pathologischem Gewebe in einem Modell mehr imitiert werden konnte, so konnten zumindest nach histologischen und immunhistochemischen Untersuchungen eindeutige pathologische, maligne Tumormodelle generiert werden. Die Tumormodelle zeigten durchgehend Zell- und Kernpleomorphismen, atypische und vermehrte suprabasale Mitosen, eine Störung der normalen Gewebearchitektur, die Ausbildung von Interzellularbrücken, Einzelzelldyskeratosen und Verhornungsknospen, sowie Stellen der Durchbrechung der Basalmembran und Invasion von Tumorzellen in die darunterliegende Lamina propria. All das sind eindeutige Kennzeichen malignen Wachstums
Auch die Ergebnisse der TEER-Wert Messung stimmten mit den morphologischen Entwicklungen der Modelle überein. So stiegen die TEER-Werte der Kontrollmodelle konsequent an, was für eine deutliche Entwicklung von kontinuierlichem Gewebe spricht und im Gegensatz dazu fielen die TEER-Werte im zeitlichen Verlauf der Tumormodelle, bei denen die Basalmembran und somit die Kontinuität des Gewebes durchbrochen wurde rapide ab, bzw. lagen im konstant niedrigen Bereich.
Der Erfolg der Etablierung dieses zuverlässig rekonstruierbaren 3D, in vitro generierten Tumormodells, das der in vivo Situation eines Plattenepithelkarzinoms sehr nahekommt, bietet der Wissenschaft eine sehr gute Möglichkeit, weitere Studien zum Tumorwachstum durchzuführen. Außerdem kann die Weiterentwicklung und Verbesserung vielversprechender, neuartiger chemotherapeutischer und radiologischer Therapieverfahren erheblich voran¬getrieben und dadurch die Heilungschancen mit geringeren Nebenwirkungen für den Patienten verbessert und eine erhöhte Lebensqualität erzielt werden.