Refine
Has Fulltext
- yes (60)
Is part of the Bibliography
- yes (60)
Year of publication
Document Type
- Doctoral Thesis (60)
Keywords
- Bor (18)
- Borylene (12)
- Diboren (9)
- Mehrfachbindung (8)
- Reaktivität (7)
- Diborene (6)
- Heterocyclische Carbene <-N> (5)
- NHC (5)
- Übergangsmetallkomplexe (5)
- Borole (4)
Institute
Sonstige beteiligte Institutionen
Im Rahmen der Arbeit werden neue Alkinyl-substituierte Diaryldiborane(4) dargestellt und auf deren Eignung zur Oligomerisierung untersucht. Des Weiteren werden neue 1,2-Dialkinyldiborane(4) synthetisiert und deren Reaktivität beleuchtet. Außerdem werden neue 1,2-Diaryl-1,2-diheteroaryldiborane(4) dargestellt und ebenfalls auf deren Reaktivität hin untersucht.
Zu Beginn dieser Arbeit galten Kupfer(I)-emitter als vielversprechende Alternativen zu den bis dato führenden Iridium(III)-emittern, waren dabei aber nur sehr selten tatsächlich kompetitiv. Die oftmals verwendenten chelatisierenden Diimin- bzw. Phosphanliganden als π-Chromophorligand ermöglichten bei diesen Kupfer(I)-emittern die Nutzung von TADF als Emissionsmechanismus, womit in seltenen Fällen strahlenden Ratenkonstanten von kr > 105 s-1 erreicht wurden. Diese Werte konnten allerdings nicht für den gesamten sichtbaren Spektralbereich erzielt werden, was auf eingeschränkte Modifikationsmöglichkeiten sowie unvollständige Struktur-Eigenschafts-Beziehungen zurückgeführt werden kann. Erklärtes Ziel dieser Arbeit war es folglich, die Modifikationsmöglichkeiten von Kupfer(I)-emittern deutlich zu vergrößern. Hierbei wurde besonderes Augenmerk auf die Verwendung von Carbenen als monodentaten π-Chromophorliganden gelegt.
Ausgehend von MeCAAC bzw. verschiedenen CAArCs konnte eine Bandbreite von Kupfer(I)- sowie Zink(II)-verbindungen synthetisiert sowie charakterisiert werden. Die durchgeführten Photolumineszenzstudien zeigen eindrucksvoll die Chromophoreigenschaften der verwendeten Carbene auf, werden doch Quantenausbeuten bis nahezu 1 sowie strahlende Ratenkonstanten von bis zu 9·105 s-1 erreicht. Es gelang somit also, Kupfer(I)-carbenverbindungen als vielversprechende Emitterklasse zu etablieren.
In einem zweiten Bereich wurden anschließend erste Versuche unternommen, die gewonnen Erkenntnisse auf das Feld der Zink(II)-carbenverbindungen zu übertragen. Dabei konnten wichtige Erkenntnisse hinsichtlich Struktur und Stabilität Zink(II)-MeCAAC-verbindungen erhalten werden.
Im Rahmen dieser Arbeit konnten im Ersten Teil durch Anwendung verschiedener Synthesestrategien neuartige ansa-Halbsandwichkomplexe der sechsten, achten und zehnten Gruppe der Übergangsmetalle synthetisiert und umfassend charakterisiert werden. Die dargestellten Verbindungen wurden in Reaktivitätsstudien auf ihr Verhalten gegenüber Chalkogenen, sowie gegenüber niedervalenten späten Übergangsmetallkomplexen untersucht. Weiterhin wurden die erhalten Komplexe auf ihrer Eignung als mögliche Vorstufen für metallhaltige Polymere hin untersucht. Dabei wurden verschiedene Polymerisationsmethoden wie thermische, katalytische oder anionische induzierte Ringöffnungsreaktion eingesetzt und die erhaltenen Polymere mit Hilfe der Gelpermeations-Chromatographie auf ihr Molekulargewicht bzw. auf ihre Polydisperisität hin untersucht.
Im zweiten Teil dieser Arbeit konnten verschiedene neuartige Basenaddukte von Tetrabromdiboran(4) dargestellt und charakterisiert werden. Durch schrittweise Reduktion gelang die Synthese basenstabilisierter neutraler Diborene auf einer bisher unbekannten Syntheseroute. Durch die erschöpfende Reduktion von [B2Br4(IDip)2] konnte erstmals ein basenstabilisiertes Diborin außerhalb einer inerten Edelgasmatrix isoliert und charakterisiert werden. Zum Verständnis der Bindungssituation sowie der Konstitution in Lösung und Festkörper wurden umfangreiche physikochemische und theoretische Studien angefertigt. Die erhaltenen Daten belegen die Synthese von [B2(IDip)2] mit einer Bindungsordnung von drei entlang der zentralen B2-Einheit. Es wurden umfangreiche Reaktivitätsstudien gegenüber verschiedenen Substraten durchgeführt. Die Umsetzung von [B2(IDip)2] mit CO lieferte ein basenstabilisiertes Bis-boralacton, bei dessen Bildung eine gänzlich unbekannte CO-Verknüpfungsreaktion auftritt, welche für Hauptgruppenelementverbindungen bisher nicht beobachtet werden konnte. Im Zuge mechanistischer Studien gelang der Nachweis eines Reaktionsintermediates. Weiterhin zeigt das Diborin [B2(IDip)2] (140) eine interessante Koordinationschemie gegenüber Kupfer(I)-Verbindungen. Dabei gelang die Darstellung von tri- und dinuklearen Kupfer(I)-Komplexen von [B2(IDip)2]. Diese wurden durch multinukleare NMR-Spektroskopie sowie mit Hilfe der Röntgenstrukturanalyse umfassend charakterisiert.
Innerhalb der vorliegenden Arbeit ist es gelungen, durch das Einführen von Cymantrenylresten neue Diborene darzustellen, welche Halbsandwich-Substituenten tragen und somit das Substitutionsmuster von basenstabilisierten Diborenen um eine weitere Verbindungsklasse zu erweitern. Neben Cymantrenylresten gelang es auch, Ferrocenylreste als weitere Substituenten in entsprechende Diborensysteme einzuführen. Über die Darstellung neuer Diborensysteme hinaus, waren Reaktivitätsstudien am Diboraferrocenophan 29 ebenso ein wesentlicher Bestandteil der vorliegenden Arbeit. Es konnte gezeigt werden, dass 29 mit kleinen Lewis-Basen, Element-Wasserstoff-Verbindungen und Hydrierungsreagenzien zur Reaktion gebracht werden kann.
Im Rahmen der vorliegenden Arbeit konnte eine Reihe symmetrischer und asymmetrischer Tetrahalogendiboran(4)-Addukte realisiert werden. Die symmetrischen Brom-substituierten Vertreter 19 und 102–107 waren durch quantitativen Ligandenaustausch der schwach gebundenen Lewis-Base SMe2 von 101 zugänglich. Im Falle der IDip-stabilisierten Addukte 108 bzw. 109a/b gelang die Darstellung in sehr guten Ausbeuten durch direkte Umsetzung von freiem Carben mit den Tetrahalogendiboran(4)-Vorstufen 1 (X = Cl) bzw. 2 (X = I). Die asymme¬trischen Vertreter 113a–116b konnten durch sukzessive Adduktbildung ausgehend von 1 bzw. 6 mit cAAC und dem jeweiligen NHC bei tiefen Temperaturen (−78 °C) in moderaten bis guten Ausbeuten dargestellt werden.
Nachfolgende Reduktionsversuche der asymmetrischen Addukte 113a/b und 114b–116b waren von mäßigem Erfolg geprägt. Als Reduktionsmittel wurden Alkali- bzw. Erdalkalimetalle, Interkallationsverbindungen und Übergangsmetallkomplexe eingesetzt. Zwar war in allen Fällen eine deutliche Farbänderung beobachtbar, die, zusammen mit den beobachteten Resonanzen in den 11B-NMR-Spektren, die Synthese von asymmetrischen Diborenen nahelegten, jedoch gelang die Isolierung der Diborene nicht. Hierbei gestaltete sich die Abtrennung der gebildeten Nebenprodukte als problematisch.
Deutlich selektiver verliefen hingegen die Reduktionen der symmetrischen Tetrahalogen-diboran(4)-Bis(Addukte) mit NaNaph bei tiefen Temperaturen (−78 °C). Hierbei gelang es, das Portfolio der bereits bekannten Vertreter dieser Substanzklasse zu erweitern. So konnten die Brom-substituierten Diborene 126–128 erstmals vollständig charakterisiert werden. Der Einfluss der Halogenatome auf die chemischen und physikalischen Eigenschaften der Diborene wurde ferner an zwei Beispielen der IDip-stabilisierten Diborene 129 und 130 untersucht.
Bei identischem NHC, aber unterschiedlichen Halogenen, konnten die Eigenschaften der Diborene 21, 129 und 130 näher untersucht und miteinander verglichen werden. Besonders deutlich werden die Redoxeigenschaften der Diborene von der Art des gebundenen Halogens beeinflusst, wie cyclovoltammetrische Untersuchungen belegen. Alle NHC-stabilisierten 1,2 Dihal¬ogen¬diborene konnten ferner anhand ihrer physikalischen Eigenschaften eingeordnet und miteinander verglichen werden.
Neben der Synthese und Charakterisierung neuartiger Diborene wurden auch verschiedene Reaktivitätsstudien durchgeführt. So konnten die Diborene 21, 123, 126 und 129 mit CO2 unter milden Bedingungen umgesetzt werden, wobei verschiedene Reaktionsprodukte nachgewiesen wurden. Der initiale Schritt umfasste in allen Fällen eine [2+2]-Cycloaddition die zu den Dibora-β-Lactonen 131a–134a führte, von denen 131a und 132a vollständig charakterisiert werden konnten. Im weiteren Reaktionsverlauf wurden jedoch Isomerisierungsreaktionen von 132a–134a bei Raum¬temperatur beobachtet, wobei die 2,4 Diboraoxetan 3 one 132b–134b isoliert wurden.
Bedingt durch die verhältnismäßig langsame Umsetzung von 21 zu 132a konnte die [2+2] Cyclo¬addition mittels 1H-VT-NMR-Spektroskopie verfolgt werden, wobei die Rückgrat¬protonen der NHCs als selektive Sonde dienten. Eine bemerkenswert hohe Stabilität konnte für 131a bei Raumtemperatur beobachtet werden, bei der keine Anzeichen einer Umlagerung nachweisbar waren. Die angefertigten quantenchemischen Untersuchungen zum Reaktions¬mechanismus legen eine höhere Energiebarriere des Schlüsselschrittes der Umlagerungs¬reaktion für 131a als für 132a nahe, womit die Stabilität von 131a erklärbar ist. Ferner konnten beim Erhitzen von 131a für 16 Stunden auf 60 °C kurzlebige Intermediate in Form eines Oxoborans und Borylens, die im Laufe der Isomerisierungsreaktion der Dibora-β-Lactonen zu den 2,4 Diboraoxetan 3 onen auftreten, 11B NMR-spektroskopisch nachgewiesen werden. Hierdurch wurde ein weiteres Indiz gewonnen, dass die Richtigkeit des postulierten Reaktionsmechanimus verdeutlicht.
Die reduzierende Wirkung der Diborene konnte mit der Darstellung von Radikalkationen demonstriert werden. Hierbei erfolgte die Umsetzung der Diborene 21, 123–126 und 128 mit [C7H7][BArF4] zu 138–143 in guten bis sehr guten Ausbeuten. Die gebildeten Radikale konnten vollständig charakterisiert werden und sind wegen ihrer Eigen¬schaften gut mit bereits literaturbekannten Vertretern dieser Substanzklasse vergleichbar.
Versuche die Radikalkationen durch Umsetzung der Diborene mit [C7H7][BF4] darzustellen scheiterten an der Zersetzung während der Aufarbeitung, wodurch die Wichtigkeit des schwach koordinierenden Anions verdeutlich wird. Entgegen der Erwartungen wurden beim Vergleich der ESR-Spektren der dargestellten Radikalkationen mit bekannten Analoga deutlich unterschiedliche giso-Werte ermittelt, die auf den starken Einfluss der Bromatome zurückzuführen sind. Des Weiteren war es möglich, eine Korrelation zwischen den Strukturparametern in der Festphase und den UV/Vis-Absorptionsmaxima in Lösung nachzuweisen, wonach für diejenigen Radikale die stärkste Blauverschiebung beobachtet wurde, die den größten Diederwinkel α, zwischen den B2Br2-Ebenen und den CN2C2-Carben-ebenen, aufwiesen.
In weiteren Studien wurden die Redoxeigenschaften der Diborene durch Umsetzung von
21 und 123–125 mit elementaren Chalkogenen unter milden Reaktionsbedingungen untersucht. So konnten durch Umsetzung der Diborene mit elementarem Schwefel die Diborathiirane
144–147 in moderaten bis guten Ausbeuten erhalten werden. Trotz eines großen Überschusses an Schwefel wurde aber keine vollständige BB-Bindungsspaltung beobachtet. Auf analoge Weise wurden die Diboraselenirane 148, 150 und 151 durch Umsetzung mit rotem Selen in moderaten bis guten Ausbeuten synthetisiert. Deutliche Unterschiede zeigten sich aber beim IDep-stabilisierten Diboren 123, das ein radikalisches Seleniran ausbildete. Überschüs¬siges Selen begünstigt vermutlich eine Folgeoxidation des in situ gebildeten Diboraselenirans, die jedoch für die anderen Verbindungen dieser Substanzklasse nicht beobachtbar war. Interessanterweise wurde bei allen Dipp-substituierten Verbindungen (Diborathiirane 144 und 146 sowie Dibora¬selenirane 148 und 151) das Fehlen einer Dipp-Gruppe der stabilisierten NHC-Basen im 1H NMR-Spektrum nachgewiesen. Dieser Umstand konnte durch eine eingeschränkte Rotation um die BC-Bindungsachse mittels 1H-VT-NMR-Spektrum aufgeklärt werden, wobei die Rotationsbarriere exemplarisch für 144 13.9 ± 1 kcal/mol beträgt.
Eine bemerkenswerte Reaktivität der 1,2-Dibromdiborene 21 und 123–126 wurde gegenüber hetero¬aroma¬tischer Stickstoffbasen beobachtet. Mit einem großen Überschuss an Pyridin konnte ein Bromidanion aus den Diborenen verdrängt werden, wodurch die Diborenkationen 154–158 in moderaten bis guten Ausbeuten erhalten wurden. Die Abtrennung der dabei unvermeidlich gebildeten NHC-Salze gestaltete sich als schwierig, allerdings gelang es, nach einer in situ Deprotonierung mit NaHMDS die freien NHCs zu entfernen. Versuche der Deri-vatisierung mit anderen aromatischen Basen wie 2- bzw. 4-Picolin, Chinolin oder 2,2’-und 4,4’-Bipyridin scheiterten. Erfolgreich konnte DMAP eingesetzt werden, wodurch es möglich war, die Diborenkationen 160–162 in guten bis sehr guten Ausbeuten zu erhalten. Interessanterweise zeigen 154–158 teils deutliche solvatochrome Absorptions¬eigenschaften in den UV/Vis-Spektren. Im Laufe der Umsetzung von 125 mit Pyridin konnte durch angepasste Reaktions¬bedingungen das Dikation 159 in moderaten Ausbeuten isoliert werden. Dessen bemerkenswerte Stabilität zeigte sich durch eine ausgeprägte Widerstands¬fähigkeit gegenüber Sauerstoff und Luftfeuchtigkeit über mehrere Wochen. Weiterführende Unter¬suchungen der Festkörperstruktur von 159 zeigen Bindungsparameter, die trotz der ionischen Natur der Verbindung, nur geringfügig von denen des neutralen Diborens 125 abweichen. Mittels Raman-Spektroskopie konnten des Weiteren die BB-Bindungsstärke in 159 näher bestimmt werden, die mit einer Kraftkonstante von 470 N/m nahezu identisch zu der des neutralen Dibores (465 N/m) ist, was Rückschlüsse auf die Lokalisierung der positiven Ladungen auf den Pyridinringen zulässt. Aus diesem Grund kann Verbindung 159 als bis dato einziges Beispiel eines luft- und feuchtigkeitsstabilen Diborens bezeichnet werden.
Synthese und Reaktivität von Übergangsmetall-stabilisierten und Lewis-basenstabilisierten Borylenen
(2022)
Die vorliegende Arbeit befasst sich im ersten Teil mit der Reaktivität von Gruppe 8 Borylenkomplexen.
Zunächst wurde der Eisenborylenkomplex 71 mit verschiedenen Carbodiimiden umgesetzt. Die entstandenen Produkte in Form von Spiroverbindungen, [2+2]-Cycloadditionsprodukten sowie Diazadiboretidinen konnten strukturell und spektroskopisch untersucht werden. Außerdem wurde 71 mit Aziden umgesetzt, was NMR-spektroskopisch zur Bildung von Tetrazaborolen führt.
Der Eisenbis(borylen)komplex 72 wurde ebenfalls mit Carbodiimiden umgesetzt und die entstandenen Verbindungen, unter anderem Diazadiboretidine, strukturell und spektroskopisch untersucht. Eine Umsetzung von 72 mit Stickstoffbasen wie Azobenzol, 2,2'-Bipyridin oder Pyridazin führte bei letzterem zur Bildung eines Koordinationsprodukts.
Während die Umsetzungen des Eisentetrakis(borylen)komplexes 73 mit Methylisocyanid, Magnesium und Trimethylphosphan zu Zersetzung führten, konnten mit Bis(piperidyl)acetylen und Diisopropylcarbodiimid keine Umsetzungen festgestellt werden.
Nach Aufnahme eines UV/Vis- und CV-Spektrums des Eisentetraborkomplexes 74 wurde versucht, diesen mit diversen Erd- und Erdalkalimetallverbindungen zu reduzieren. Hierbei konnte entweder keine Reaktion oder Zersetzung festgestellt werden. Weitere Umsetzungen von 74 erfolgten mit unterschiedlichen Lewis-Basen, Stickstoffbasen, Säuren, Gasen, Chalkogenen, DIC und einer Platin(0)-verbindung. Diese Umsetzungen führten zu keinen identifizierbaren Produkten.
Im zweiten Teil dieser Arbeit wurde die Synthese und Reaktivität des basenstabilisierten Borylens 89 untersucht.
Nach Verbesserung der Synthesebedingungen konnte ein photolytisch induzierter Ligandenaustausch des CO-Liganden mit verschiedenen Substraten durchgeführt werden.
Hierbei führten die Umsetzungen mit Carbenen oder Phosphanen in Abhängigkeit derer sterischer Eigenschaften zu den entsprechenden Adduktverbindungen. Außerdem konnte eine Adduktverbindung mit Schwefel dargestellt werden, während eine Umsetzung mit Selen nur zur Zersetzung führte.
Die Umsetzung mit DMAP lieferte im Gegensatz zur den vorherigen Adduktverbindungen ein biradikalisches Produkt, welches durch ESR-Messung charakterisiert werden konnte.
Eine lösungmittelabhängige Reaktion findet mit Trifluorophosphan statt, mit welchem die entsprechende instabile Borylenverbindung NMR-spektroskopisch untersucht werden konnte.
Die Borazidspezien 169 und 170 sowie das Aminoboran 171 konnten durch Umsetzung von 89 mit Mesityl- und Phenylazid generiert und vollständig charakterisiert werden.
In Anlehnung an die Synthese von Fischercarbenkomplexen wurde 89 mit Organometallverbindungen umgesetzt, um die Reaktivität des CO-Liganden zu erforschen. Nach Umsetzungen mit Phenyllithium, Methyllithium oder Benzylkalium erfolgte die Methylierung in situ mittels Methyltriflat oder dem Meerwein-Salz [Me3O][BF4]. Die entstandenen Fischercaben-analogen Verbindungen konnten strukturell und spektroskopisch charakterisiert werden.
Die vorliegende Arbeit beschäftigt sich mit der Synthese und Reaktivität von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweizähnigen (84a–87c) und einzähnigen Phosphanen (43a–c; 88a–89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen Fällen gelang es mithilfe der Molekülstrukturen im Festkörper die Verbindungen näher zu untersuchen. Dabei konnten erstmalig Phosphan-verbrückte Diboran(6)-Verbindungen 86a–87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zurückzuführen ist.
Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise für die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur für 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-Übergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend für eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der räumliche Anspruch der Phosphane einen entscheidenden Stabilitätsfaktor für das entstehende Phosphan-stabilisierte Diboren dar.
Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a–98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbrückten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen für diese Verbindungsklasse typische NMR-spektroskopische und röntgenkristallographische Messdaten. Zusätzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden näher analysiert.
Das Hauptaugenmerk der durchgeführten Forschungsarbeiten lag auf der Untersuchung der Reaktivität des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels für ein strukturell aufgeklärtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollständige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden.
Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festkörper und quantenchemisch näher untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizität.
Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). Während für die Umsetzungen mit diversen Silanen nur über die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufklärung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallröntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112–113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zusätzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H–1H-NOESY-NMR-Experimenten bestätigt werden.
Das Diboren 48a zeigt auch ein reichhaltiges Reaktivitätsverhalten gegenüber kleinen Molekülen. Nach dem Austausch der Schutzgasatmosphäre gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden.
Gänzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molekülen und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festkörperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da für alle drei Strukturvorschläge experimentelle Hinweise gefunden werden können.
Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erhöhtem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen führten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. Für beide Reaktivitäten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schlüsselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich für eine Vielzahl an Reaktivitäten von 48a verantwortlich ist.
Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen ungesättigten Substraten. Die Reaktivität gegenüber Aziden konnte hierbei nicht vollständig aufgeklärt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen.
Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a–c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abhängig war. Das Azadiboretidin 123a konnte im Festkörper näher untersucht werden und stellt ein seltenes Beispiel für einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollständig aufgeklärtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-Rückgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen für 124a ähnliche Bindungsparameter wie für ein literaturbekanntes π-acides NHC voraus.
Die Reaktion von 48a mit terminalen Alkinen führte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a–d. In Lösung konnten für 126c/d zusätzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10% NMR-spektroskopisch beobachtet werden. Im Festkörper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen bestätigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabständen innerhalb der BCsp2B-Einheiten von 126a–c und 127d unterstützt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten lässt. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festkörper gibt einen Hinweis auf eine anfängliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die über eine 1,3-Umlagerung zur Bildung der 1,3-Diborete führt.
Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4‐Diethinylbenzol die Darstellung der Mono‐ und Bis(1,3‐dihydro‐1,3‐diborete) 128 und 129, wobei 129 nur im Festkörper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5‐Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3−n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen für das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen über den zentralen Benzolring voraus, was die Ursache für die beobachtete Fluoreszenz sein könnte.
Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a–e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem räumlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen Löslichkeit in gängigen Lösungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abhängig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilität der Diborane(4) 132b/c gegenüber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht.
Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gewählten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivität wurde jedoch im Rahmen dieser Arbeit nicht durchgeführt. Die Schlüsselschritte des Reaktionsmechanismus zur Bildung von 133 führen höchstwahrscheinlich wieder über das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133.
Mit dieser Arbeit ist es gelungen, neue Erkenntnisse über die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane eröffnen diesen Diborenen eine einzigartige Reaktivität, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft könnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. Wünschenswert wäre es die Diboren-Monomere miteinander zu Ketten zu verknüpfen.
Der erste Teil dieser Arbeit beschäftigt sich mit der "Synthese und Reaktivität sterisch anspruchsvoller Iminoborane". Dabei war es möglich, ausgehend von einem Terphenylamin geeignete Aminoborane zu synthetisieren, welche anschließend mit starken, nicht-nukleophilen Basen umgesetzt wurden. Mittels formaler HCl-Eliminierung mit LiTmp gelang auf diese Weise die Darstellung sterisch anspruchsvoller Iminoborane.
Der zweite Teil dieser Arbeit befasst sich mit der "Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme". Durch die Verwendung von sterisch wenig anspruchsvollen Liganden oder Boryl-Substituenten war es möglich planare Diboren-Systeme zu generieren und darüberhinaus Divinyldiborene darzustellen.
Aminoborylenkomplexe der Gruppe 6 [(OC)5M=BN(SiMe3)2] (M = Cr, Mo, W) reagieren mit Übergangsmetallkomplexen unter Transfer der Boryleneinheit bzw. in Transmetallierungsreaktionen und bilden dabei neuartige Borylenkomplexe. In dieser Dissertation wird die Synthese, Charakterisierung und Reaktivität der auf diesem Wege dargestellten Verbindungen - unter anderem Hydridoborylenkomplexe, Bis(borylen)komplexe und borylensubstituierte MOLPs - beschrieben.
In der vorliegenden Arbeit wird die Darstellung und Charakterisierung von Komplexen, Koordinationspolymeren und MOFs auf der Basis von dreiwertigen Lanthanidchloriden und verschiedenen verbrückenden Azin- und Diazin-Liganden beschrieben. Ziel war es neuartige Koordinationspolymere mit effektiven Photolumineszenzeigenschaften zu generieren.
Es konnten 44 neue organisch-anorganische Hybridmaterialien präsentiert werden. Der Fokus der Arbeit lag neben der strukturellen Charakterisierung auf der Bestimmung der Photolumineszenzeigenschaften und der Betrachtung der thermischen Eigenschaften der Verbindungen.
Bei solvothermalen Reaktionen von wasserfreien Lanthanidchloriden mit den Liganden 4,4‘-Bipyridin (bipy) und Pyridin (py) konnten die dinuklearen Komplexe [Ln2Cl6(bipy)(py)6] mit Ln = Y, Pr, Nd, Sm-Yb, die strangartigen Koordinationspolymere 1∞[LnCl3(bipy)(py)2]·(py) mit Ln = Gd-Er, Yb und 1∞[Lu2Cl5(bipy)2 (py)4]1∞[LuCl4(bipy)], sowie das 2D-Netzwerk 2∞[Ce2Cl6(bipy)4]·(py) synthetisiert und mithilfe der Röntgeneinkristallstrukturanalyse charakterisiert werden. Spektroskopische Untersuchungen an den Verbindungen ergaben außergewöhnliche Photolumineszenzeigenschaften auf der Basis von Ln3+-Ionen mit Emissionen im UV-VIS und NIR-Bereich. Im Falle des dinuklearen Komplexes konnten mithilfe der Ionen Y3+, Gd3+, Tb3+ und Eu3+ Lichtemission in den RGB-Grundfarben generiert werden.
Der Einfluss salzsaurer Bedingungen führt zur Bildung der pyridiniumhaltigen Nebenphasen [Hpy]1∞[LnCl4(bipy)] mit Ln = Y, Tb), Yb, Lu, [Hpy]22∞[Sm2Cl8(bipy)3]·2(py) und [Hdpa] [EuCl4(dpa)].
Unter der Verwendung einer Schmelzsyntheseroute wurden die Verbindungen 3∞[La2Cl6(bipy)5] ·4(bipy) 2∞[Ln2Cl6(bipy)3]·2(bipy) mit Ln = Nd, Sm-Dy, Er, Yb und eine Dotierreihe mit Ln = Gd2-x-yEuxTy (x,y = 0-1), welche vor einigen Jahren im Arbeitskreis von Prof. Müller-Buschbaum et al. entdeckt wurden, dargestellt. Der Fokus der Arbeit lag hierbei auf der Bestimmung der Photolumineszenzeigenschaften der Netzwerke, wobei vor allem bei der Dotierreihe unter der Verwendung von Ln3+-zentrierter Emission ein stufenloses Farbtuning der Emissionsfarbe von grün nach rot erreicht werden konnte. Zusätzlich wurden an diesen Verbindungen systematische Untersuchungen zur strukturellen Aufklärung, der bei höheren Temperaturen entstehenden Netzwerk- und Gerüstverbindungen, durchgeführt. Hierbei konnten Kondensationsprodukte wie 3∞[LaCl3(bipy)], 2∞[Ln3Cl9(bipy)3] mit Ln = Pr, Sm, 2∞[Ho2Cl6(bipy)2] und 2∞[Gd2Cl6(qtpy)(bpy)]·(bipy) strukturell aufgeklärt werden.
Die Übertragung der solvothermalen Syntheseroute unter der Verwendung von Pyridin auf die gegenüber bipy verlängerten Azin-Liganden Dipyridylethen (dpe) bzw. –ethan (dpa) erwies sich als erfolgreich und resultierte in eine Erweiterung der Strukturchemie durch die Darstellung der lumineszierenden Koordinations-polymere 2∞[La2Cl6(dpe)3(py)2]·(dpe), 1∞[LnCl3(dpe)(py)2]·0.5(dpe)0.5(py) mit Ln = Eu, Gd, Er, 2∞[LaCl3(dpa)2]·(dpa) und 1∞[LnCl3(dpa)(py)2]·0.5(dpa)0.5(py) mit Ln = Gd, Er. Eine Verkürzung des bipy-Liganden in Form der Di-Azinen wie Pyrazin (pyz), Pyrimidin (pym) und Pyridazin (pyd) und deren Umsetzung mit LnCl3 führte zur Bildung von Komplexen und polymeren Strukturen wie 3∞[LaCl3(pyz)], [Ln2Cl6(pyz)(py)6]·2(pyz) mit Ln = Sm, Er, 1∞[Sm2Cl6(μ-pym)2(pym)3]·(pym), [Er2Cl6(pym)6] und [ErCl3(η-pyd)(pyd)2] mit Lumineszenzeigenschaften auf der Basis der jeweiligen Liganden und Ln3+-Ionen.