Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2022 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- Squamous cell carcinoma (1)
- USP28 (1)
- ΔNp63 (1)
∆Np63 is a master regulator of squamous cell identity and regulates several signaling pathways that crucially
contribute to the development of squamous cell carcinoma (SCC) tumors. Its contribution to coordinating the
expression of genes involved in oncogenesis, epithelial identity, DNA repair, and genome stability has been
extensively studied and characterized. For SCC, the expression of ∆Np63 is an essential requirement to
maintain the malignant phenotype. Additionally, ∆Np63 functionally contributes to the development of cancer
resistance toward therapies inducing DNA damage.
SCC patients are currently treated with the same conventional Cisplatin therapy as they would have been
treated 30 years ago. In contrast to patients with other tumor entities, the survival of SCC patients is limited,
and the efficacy of the current therapies is rather low. Considering the rising incidences of these tumor entities,
the development of novel SCC therapies is urgently required. Targeting ∆Np63, the transcription factor, is a
potential alternative to improve the therapeutic response and clinical outcomes of SCC patients.
However, ∆Np63 is considered “undruggable.” As is commonly observed in transcription factors, ∆Np63 does
not provide any suitable domains for the binding of small molecule inhibitors. ∆Np63 regulates a plethora of
different pathways and cellular processes, making it difficult to counteract its function by targeting
downstream effectors. As ∆Np63 is strongly regulated by the ubiquitin–proteasome system (UPS), the
development of deubiquitinating enzyme inhibitors has emerged as a promising therapeutic strategy to target
∆Np63 in SCC treatment.
This work involved identifying the first deubiquitinating enzyme that regulates ∆Np63 protein stability. Stateof-the-art SCC models were used to prove that USP28 deubiquitinates ∆Np63, regulates its protein stability,
and affects squamous transcriptional profiles in vivo and ex vivo. Accordingly, SCC depends on USP28 to
maintain essential levels of ∆Np63 protein abundance in tumor formation and maintenance. For the first time,
∆Np63, the transcription factor, was targeted in vivo using a small molecule inhibitor targeting the activity of
USP28. The pharmacological inhibition of USP28 was sufficient to hinder the growth of SCC tumors in
preclinical mouse models.
Finally, this work demonstrated that the combination of Cisplatin with USP28 inhibitors as a novel therapeutic
alternative could expand the limited available portfolio of SCC therapeutics. Collectively, the data presented
within this dissertation demonstrates that the inhibition of USP28 in SCC decreases ∆Np63 protein abundance,
thus downregulating the Fanconi anemia (FA) pathway and recombinational DNA repair. Accordingly, USP28
inhibition reduces the DNA damage response, thereby sensitizing SCC tumors to DNA damage therapies, such
as Cisplatin.