• Deutsch
  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen

Refine

Has Fulltext

  • yes (13)

Is part of the Bibliography

  • yes (13)

Year of publication

  • 2021 (3)
  • 2020 (2)
  • 2019 (5)
  • 2018 (1)
  • 2015 (1)
  • 2014 (1)

Document Type

  • Doctoral Thesis (13)

Language

  • English (7)
  • German (6)

Keywords

  • Click-Chemie (3)
  • Kohlenhydrate (2)
  • Molekulare Erkennung (2)
  • dSTORM (2)
  • Adhäsion (1)
  • Antigen CD19 (1)
  • Antikörper (1)
  • Bioink (1)
  • Biomaterial (1)
  • Bioorganische Chemie (1)
+ more

Author

  • Bertleff-Zieschang, Nadja Luisa (1)
  • Bertlein, Sarah (1)
  • Ertl, Julia Andrea (1)
  • Gutmann, Marcus (1)
  • Kraus, Michael (1)
  • Letschert, Sebastian (1)
  • Maier, Jonathan (1)
  • Memmel, Elisabeth (1)
  • Miesler, Tobias Hans-Herbert (1)
  • Pinzner, Florian (1)
+ more

Institute

  • Institut für Organische Chemie (8)
  • Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (2)
  • Institut für Pharmazie und Lebensmittelchemie (2)
  • Fakultät für Chemie und Pharmazie (1)
  • Institut für Funktionsmaterialien und Biofabrikation (1)
  • Theodor-Boveri-Institut für Biowissenschaften (1)

13 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Vicinal and Double Chemoselective Biofunctionalization of Polyoxazolines (2021)
Pinzner, Florian
In this work, a toolbox was provided to create three-component polymer conjugates with a defined architecture, designed to bear different biocomponents that can interact with larger biological systems in biomacromolecular recognition experiments. The target architecture is the attachment of two biomolecule ‘arms’ to the alpha telechelic end point of a polymer and fixating the conjugate to the gold surface of SAW and SPR sensor chips with the polymer’s other omega chain end. This specific design of a conjugate will be implemented by using a strategy to yield novel double alpha as well as omega telechelic functionalized POx and the success of all cascade reaction steps leading to the final conjugation product will be proven through affinity measurements between covalently bound mannose and ConA. All reactions were performed on a low molecular model level first and then transferred to telechelic and also side chain functionalized polymer systems.
Hydrogels as Biofunctional Coatings and Thiol-Ene Clickable Bioinks for Biofabrication (2019)
Bertlein, Sarah
Aim of this thesis was the development of functionalizable hydrogel coatings for melt electrowritten PCL scaffolds and of bioprintable hydrogels for biofabrication. Hydrogel coatings of melt electrowritten scaffolds enabled to control the surface hydrophilicity, thereby allowing cell-material interaction studies of biofunctionalized scaffolds in minimal protein adhesive environments. For this purpose, a hydrophilic star- shaped crosslinkable polymer was used and the coating conditions were optimized. Moreover, newly developed photosensitive scaffolds facilitated a time and pH independent biofunctionalization. Bioprintable hydrogels for biofabrication were based on the allyl-functionalization of gelatin (GelAGE) and modified hyaluronic acid-products, to enable hydrogel crosslinking by means of the thiol-ene click chemistry. Optimization of GelAGE hydrogel properties was achieved through an in-depth analysis of the synthesis parameters, varying Ene:SH ratios, different crosslinking molecules and photoinitiators. Homogeneity of thiol-ene crosslinked networks was compared to free radical polymerized hydrogels and the applicability of GelAGE as bioink for extrusion-based bioprinting was investigated. Purely hyaluronic acid-based bioinks were hypothesized to maintain mechanical- and rheological properties, cell viabilities and the processability, upon further decreasing the overall hydrogel polymer and thiol content. Hydrogel coatings: Highly structured PCL scaffolds were fabricated with MEW and subjected to coatings with six-armed star-shaped crosslinkable polymers (sP(EO-stat-PO)). Crosslinking results from the aqueous induced hydrolysis of reactive isocyanate groups (NCO) of sP(EO-stat-PO) and increased the surface hydrophilicity and provided a platform for biofunctionalizations in minimal protein adhesive environments. Not only the coating procedure was optimized with respect to sP(EO-stat-PO) concentrations and coating durations, instead scaffold pre-treatments were developed, which were fundamental to enhance the final hydrophilicity to completely avoid unspecific protein adsorption on sP(EO-stat-PO) coated scaffolds. The sP(EO-stat-PO) layer thickness of around 100 nm generally allows in vitro studies not only in dependence on the scaffold biofunctionalization but also on the scaffold architecture. The hydrogel coating extent was assessed via an indirect quantification of the NCO-hydrolysis products. Knowledge of NCO-hydrolysis kinetics enabled to achieve a balance of sufficiently coated scaffolds while maintaining the presence of NCO-groups that were exploited for subsequent biofunctionalizations. However, this time and pH dependent biofunctionalization was restricted to small biomolecules. In order to overcome this limitation and to couple high molecular weight biomolecules another reaction route was developed. This route was based on the photolysis of diazirine moieties and enabled a time and pH independent scaffold biofunctionalization with streptavidin and collagen type I. The fibril formation ability of collagen was used to obtain different collagen conformations on the scaffolds and a preliminary in vitro study demonstrated the applicability to investigate cell-material interactions. The herein developed scaffolds could be applied to gain deeper insights into the fundamentals of cellular sensing. Especially the complexity by which cells sense e.g. collagen remain to be further elucidated. Therefore, different hierarchies of collagen-like conformations could be coupled to the scaffolds, e.g. gelatin or collagen-derived peptide sequences, and the activation of DDR receptors in dependence on the complexity of the coupled substances could be determined. Due to the strong streptavidin-biotin bond, streptavidin functionalized scaffolds could be applied as a versatile platform to allow immobilization of any biotinylated molecules. Gelatin-based bioinks: First the GelAGE products were synthesized with respect to molecular weight distributions and amino acid composition integrity. A detailed study was conducted with varying molar ratios of reactants and synthesis durations and implied that gelatin degradation was most dominant for high alkaline synthesis conditions with long reaction times. Gelatin possesses multiple functionalizable groups and the predominant functionalization of amine groups was confirmed via different model substances and analyses. Polymer network homogeneity was proven for the GelAGE system compared to free radical polymerized hydrogels with GelMA. A detailed analysis of hydrogel compositions with varying functional group ratios and UV- or Vis-light photoinitiators was executed. The UV-initiator concentration is restricted due to cytotoxicity and potential cellular DNA damages upon UV-irradiation, whereas the more cytocompatible Vis- initiator system enabled mechanical stiffness tuning over a wide range by controlling the photoinitiator concentration at constant Ene:SH ratios and polymer weight percentages. Versatility of the GelAGE bioink for different AM techniques was proved by exploiting the thermo-gelling behavior of differently degraded GelAGE products for stereolithography and extrusion-based printing. Moreover, the viability of cell-laden GelAGE constructs was demonstrated for extrusion-based bioprinting. By applying different multifunctional thiol-macromolecular crosslinkers the mechanical and rheological properties improved concurrently to the processability. Importantly, lower thiol-crosslinker concentrations were required to yield superior mechanical strengths and physico-chemical properties of the hydrogels as compared to the small bis-thiol-crosslinker. Extrusion-based bioprinting with distinct encapsulated cells underlined the need for individual optimization of cell-laden hydrogel formulations. Not only the viability of encapsulated cells in extrusion-based bioprinted constructs should be assessed, instead other parameters such as cell morphology or production of collagen or glycosaminoglycans should be considered as these represent some of the crucial prerequisites for cartilage Tissue Engineering applications. Moreover, these studies should be expanded to the stereolithographic approach and ultimately the versatility and cytocompatibility of formulations with macromolecular crosslinkers would be of interest. Macromolecular crosslinkers allowed reducing polymer weight percentages and amounts of thiol groups and are thus expected to contribute to increased cytocompatibility, especially in combination with the more cytocompatible Vis-initiator system, which remains to be elucidated. Hyaluronic acid-based bioinks: Different molecular weight hyaluronic acid (HA) products were synthesized to bear ene- (HAPA) or thiol-functionalities (LHASH) to enable pure HA thiol-ene crosslinked hydrogels. Depending on the molecular weight of modified HA products, polymer weight percentages and Ene:SH ratios, a wide range of mechanical stiffness was covered. However, the manageability of high molecular weight HA (HHAPA) product solutions (HHAPA + LHASH) was restricted to 5.0 wt.-% as a consequence of the high viscosity. Based on the same HA thiol component (LHASH), hybrid hydrogels of HA with GelAGE were compared to pure HA hydrogels. Although the overall polymer weight percentage of HHAPA + LHASH hydrogels was significantly lowered compared to hybrid hydrogels (GelAGE + LHASH), similar mechanical and physico-chemical properties of pure HA hydrogels were determined with maintained Ene:SH ratios. Low viscous low molecular weight HA precursor solutions (LHAPA + LHASH) prevented the applicability for extrusion-based bioprinting, whereas the non-thermoresponsive HHAPA + LHASH system could be bioprinted with only one-fourth of the polymer content of hybrid formulations. The high viscous behavior of HHAPA + LHASH solutions, lower polymer weight percentages, decreased printing pressures and consequently declined shear stress during printing, were hypothesized to contribute to high cell viabilities in extrusion-based bioprinted constructs compared to the hybrid bioink. The low molecular weight HA precursor formulation (LHAPA + LHASH) was not applicable for extrusion-based printing, but this system has potential for other AM techniques such as stereolithography. Similar to the GelAGE system a more detailed study on the functions of encapsulated cells would be useful to further develop this system. Moreover, the initiation with the Vis-initiator should be conducted.
Synthese multifunktionaler Farbstoffe und Linker zur Visualisierung biologischer Strukturen (2021)
Wolf, Natalia
Durch stetige Entwicklung der Mikroskopiemethoden in den letzten Jahrzehnten ist es nun möglich Strukturen und Abläufe in biologischen Systemen detaillierter darzustellen als mit der von Abbe entdeckten maximalen Auflösungsgrenze. Oft werden dabei Fluoreszenzmarker benutzt, welche die unsichtbare Welt der Mikrobiologie und deren biochemische Prozesse illuminieren. Diese werden entweder durch Expression, wie z.B. das grün fluoreszierende Protein (GFP), in das zu untersuchende Objekt eingebracht oder durch klassische Markierungsmethoden mithilfe von fluoreszierenden Immunkonjugaten installiert. Jedoch gewinnt eine alternative Strategie, die von der interdisziplinären Zusammenarbeit zwischen Chemikern, Physikern und Biologen profitiert, immer mehr an Bedeutung – die bioorthogonale Click-Chemie. Sie ermöglicht eine effiziente Fluoreszenzmarkierung der biologischen Strukturen unter minimalem Eingriff in die Abläufe der Zelle. Dazu müssen allerdings sowohl Farbstoffe als auch die biologisch aktiven Substanzen chemisch modifiziert werden, da nur dadurch die Bioorthogonalität gewährleistet werden kann. Mittlerweile existiert eine breite Palette an fluoreszierenden Farbstoffen, die das komplette sichtbare Spektrum abdecken und sich für diverse Mikroskopiemethoden eignen. Allerdings gibt es zwei Farbstoffklassen, die sich aus der gesamten Fülle abheben und sich für hochauflösende bildgebende Experimente auf Einzelmolekülebene eignen. Zum einen ist es die Farbstofffamilie der Cyanine und insbesondere der wasserlöslichen Pentamethincyanine, die reversibel und kontrolliert zum Photoschalten animiert werden können und in der stochastisch optischen Rekonstruktionsmikroskopie Anwendung finden. Zum anderen ist es die Gruppe, der Rhodamine und Fluoresceine, die zu Xanthenfarbstoffen gehören und sich durch gute photophysikalische Eigenschaften auszeichnen. Trotz der Beliebtheit stellt ihre Darstellung immer noch eine Herausforderung dar und limitiert deren Einsatz. Deshalb war es notwendig im Rahmen der vorliegenden Arbeit Möglichkeiten zur Syntheseoptimierung beider Farbstoffklassen zu finden, damit diese im Folgenden weiterentwickelt und an die biologische Fragestellung angepasst werden können. Die Arbeit unterteilt sich deshalb in Relation an die oben genannten Farbstoffklassen in zwei Bereiche. Im ersten Teil wurden Projekte basierend auf den wasserlöslichen Pentamethincyaninen behandelt. Im zweiten Teil beschäftigte sich die Arbeit mit Projekten, die auf Xanthen-Farbstoffen aufbauen.
Galectin-1: A Synthetic and Biological Study of a Tumor Target (2014)
Bertleff-Zieschang, Nadja Luisa
Galectin-1 (hGal-1) is overexpressed by numerous cancer types and previously conducted studies confirmed that the β-galactoside-binding protein mediates various molecular interactions associated with tumor growth, spread and survival. Upon interaction with carbohydrate-based binding epitopes of glycan structures on human cell surfaces galectin-1 induces proliferative, angiogenetic and migratory signals and modulates negative T cell regulation which essentially helps the tumor to evade the immune response. These findings attributed galectin-1 a pivotal role in tumor physiology and strongly suggest the protein as target for diagnostic and therapeutic applications. Within the scope of this work a strategy was elaborated for designing tailor-made galectin-1 ligands by functionalizing selected hydroxyl groups of the natural binding partner N-acetyllactosamine (LacNAc) that are not involved in the sophisticated interplay between the disaccharide and the protein. Synthetic modifications intended to introduce chemical groups i) to address a potential binding site adjacent to the carbohydrate recognition domain (CRD) with extended hGal-1-ligand interactions, ii) to implement a tracer isotope for diagnostic detection and iii) to install a linker unit for immobilization on microarrays. Resulting structures were investigated regarding their targeting ability towards galectin-1 by cocrystallization experiments, SPR and ITC studies. Potent binders were further probed for their diagnostic potential to trace elevated galectin-1 levels in microarray experiments and for an application in positron emission tomography (PET).
Vom Glycochip zur lebenden Zelle - Studien zu Infektions- und Tumor-relevanten Kohlenhydrat-Erkennungsprozessen (2015)
Memmel, Elisabeth
Kohlenhydrat-Protein-Wechselwirkungen sind häufig entscheidend beteiligt an verschiedenen einer Infektion oder malignen Erkrankung zugrunde liegenden molekularen Erkennungs-prozessen, die zu Adhäsion, Zell-Zell-Interaktion sowie Immunreaktion und -toleranz führen. Trotz der hohen Relevanz für Diagnostik und Therapie dieser Erkrankungen sind die betreffenden Strukturen und Mechanismen bisher nur ungenügend untersucht und verstanden. Ziel dieser stark interdisziplinär angelegten Arbeit war es daher, Methoden der Fachbereiche Chemie und Pharmazie, Biologie und Medizin, aber auch Physik zu kombinieren, um Kohlenhydraterkennungsprozesse im Detail zu untersuchen und auf dieser Basis strukturell neuartige diagnostische und therapeutische Anwendungen zu entwerfen. Die hochkomplexe Zusammensetzung einer Zelloberfläche wurde zunächst auf ihren Glycan-anteil reduziert und stark vereinfacht auf der Oberfläche sogenannter Glycochips imitiert. Die verwendeten Systeme auf Basis einer Gold- bzw. Glasoberfläche ergänzen sich optimal in ihrer Eignung für komplementäre analytische Methoden wie Massenspektrometrie sowie quantifizierbare Fluoreszenzspektroskopie. Der Übergang auf die lebende Zelloberfläche gelang mit Hilfe des Metabolic Glyco-engineering, das die kovalente Präsentation definierter Motive durch eine Cycloaddition zwischen zwei bioorthogonalen Reaktionspartnern (z.B. Azid und Alkin) ermöglicht. Auf diese Weise wurden in Zusammenarbeit mit der Arbeitsgruppe Sauer (Universität Würzburg) zunächst die Dichte und Verteilung verschiedener Oberflächenglycane auf humanen Zellen mittels hochauflösender Fluoreszenzmikroskopie (dSTORM) bestimmt. Diese Parameter zeigten im Modell des Glycochips einen entscheidenden Einfluss auf Bindungsereignisse und multivalente Erkennung und zählen auch auf natürlichen Zelloberflächen – in engem Zusammenhang mit der lateralen und temporalen Dynamik der Motive – zu den wichtigen Faktoren molekularer Erkennungsprozesse. Die gezielte Modifikation zellulärer Oberflächenglycane eignet sich aber auch selbst als Methode zur Beeinflussung molekularer Wechselwirkungsprozesse. Dies wurde anhand des humanpathogenen Bakteriums S. aureus gezeigt, dessen Adhäsion auf Epithelzellen der Blasenwand durch Metabolic Glycoengineering partiell unterdrückt werden konnte. In einem ergänzenden Projekt wurden zwei potentielle Metabolite eines konventionellen Antibiotikums – des Nitroxolins – mit bakteriostatischer sowie antiadhäsiver Wirksamkeit dargestellt. Diese dienten als Referenzsubstanzen zur Verifizierung der postulierten Struktur der Derivate, werden aber auch selbst auf ihr Wirkprofil hin untersucht. Gleichzeitig stehen sie zusammen mit der Grundverbindung zudem als Referenz für die Wirkstärke potentieller neu entwickelter Antiadhäsiva zur Verfügung.
Biotinylierung und Drug-Target-Untersuchungen von Dioncochinon B sowie Entwicklung einer Syntheseroute zu 7,8'-gekuppelten Naphthylisochinolin-Alkaloiden (2019)
Maier, Jonathan
In Deutschland starben im Jahr 2016 knapp 6 000 Menschen an den Folgen des Multiplen Myeloms. Die Zahl der Todesopfer dieser Krebsart ist in den letzten 16 Jahren um ca. 20% gestiegen. Da das Multiple Myelom mit einem Durchschnittsalter von 73 Jahren bei Erstdiagnose zu den Erkrankungen des höheren Lebensalters zählt, ist der Anstieg der Inzidenz und Todesfälle am ehesten auf eine höhere Lebenserwartung der Menschen durch umfassende medizinische Versorgung zurückzuführen. Auch die Behandlungsmöglichkeiten des Multiplen Myeloms wurden in den letzten zwei Jahrzehnten kontinuierlich verbessert und bieten in Form von medikamentösen Therapien für alle Erkrankten und Knochenmarktransplantationen speziell für Patienten unter 70 Jahren die Chance auf eine Verlängerung der beschwerdefreien Krankheitsphase. Nach wie vor verläuft das Multiple Myelom jedoch tödlich, sodass die Erforschung und Entwicklung neuer potenter Wirkstoffe zur Verbesserung der Prognose oder zur vollständigen Heilung essentiell ist. Ziel der vorliegenden Arbeit war daher die Biotinylierung von Dioncochinon B, einem natürlich vorkommenden Naphthochinon, erstmals isoliert aus Kallus-Kulturen von T. peltatum, das eine gute Aktivität (IC50 = 11 µM) gegen Zellen des Multiplen Myeloms aufweist. Der Affinitätsmarker Biotin sollte dabei über einen kurzen Linker an die 7- oder 8-Position des Naturstoffs angebracht werden. Nach der Etablierung einer geeigneten Syntheseroute sollten nanoLC-MS/MS-Analysen Aufschluss über mögliche Wirkstoff-Target-Interaktionen liefern. Des Weiteren wurde in dieser Arbeit die Synthese von 7,8'-gekuppelten Naphthylisochinolin-Alkaloiden im Allgemeinen und von Yaoundamin A und dessen M-Atropisomer im Speziellen untersucht. Die Naturstoffklasse der Naphthylisochinolin-Alkaloide ist neben ihrer strukturellen Vielfalt vor allem wegen ihrer Aktivitäten gegen eine Vielzahl an Erregern von Infektionskrankheiten, wie z. B. der Malaria, der Afrikanischen Schlafkrankheit oder der Leishmaniose interessant. Strukturell sind Naphthylisochinolin-Alkaloide unter anderem durch eine meist rotationsgehinderte Biaryl-Achse gekennzeichnet. Der synthetische Aufbau dieser Verbindungsachse zwischen Naphthalin- und Isochinolin-Baustein war in der Literatur bereits ausführlich behandelt worden. Da die Darstellung eines 7,8'-verknüpften Naphthyldihydroisochinolin-Alkaloids allerdings noch nie beschrieben worden war, war das Ziel dieser Arbeit die erste Totalsynthese eines Naturstoffs dieses Typs.
Bioorthogonal funktionalisierte Sphingolipide zur Evaluierung von Lipiddynamiken \(in\) \(vivo\) (2018)
Walter, Tim
In der Kontrolle von viralen oder bakteriellen Infektionen spielen Sphingolipide eine essentielle Rolle[335-336], weshalb sich inzwischen die Forschung vermehrt an Sphingolipiden und -analoga als Wirkstoffen gegen die verschiedensten Erreger beschäftigt.[9] Dabei finden in der Synthese und Identifikation potentieller Wirkstoffe auch clickchemiebasierte Ansätze Anwendung.[224] Allerdings ist die Wirkweise von sphingolipidbasierten Pharmaka auch in viraler und mikrobieller Pathogenese bisher ungeklärt. Mit der Entdeckung der CuAAC[112-113] sowie deren modernen Varianten und Alternativen, die gemeinsam unter dem Begriff Clickchemie zusammengefasst werden, ist es möglich, die strukturellen Änderungen von Biomolekülen klein zu halten und durch spätere Konjugation mit Farbstoffen Fluoreszenspektroskopie zu ermöglichen.[339-340] Während in den letzten Jahren die Clickchemie breite Anwendung zur Modifikation von Proteinen[130], Kohlenhydraten[341] und DNA[340] gefunden hat blieben Lipide lange unbeachtet[342], was vor allem auch für Sphingolipide gilt. In dieser Arbeit werden bioorthogonal funktionalisierte Sphingolipide und -analoga vorgestellt, um die Vielseitigkeit der Clickchemie auf das Feld der Sphingolipide zu übertragen. Die clickfähigen Lipidanaloga ermöglichen detaillierte Einblicke in die dynamische Organisation von Sphingolipiden bei Infektionsprozessen und ihr Einsatz als therapeutische Wirkstoffe oder zur Generierung von antibakteriellen Oberflächenbeschichtungen wurden untersucht. Die dargestellten azidmodifizierten Sphingolipide und –analoga konnten in Zusammenarbeit mit Kooperationspartnern, bezüglich ihrer Verwendung in Visualisierungsexperimenten und antibakteriellen Eigenschaften untersucht werden. Die Ceramidderivate konnten genutzt werden, um den Einfluss von Kettenlänge und Position des Azides der acylierten Säure auf die in vivo-Konjugation mit dem Fluoreszenzfarbstoff DBCO-Sulfo-Cy5 in Jurkatzellen genauer zu untersuchen.[211] Auch konnten azidfunktionalisierte Ceramide auf ihre Eignung zur Visualisierung von Ceramiddynamiken während T-Stimulation untersucht werden.[205] In diesem Zusammenhang sind visualisierbare Ceramide von besonderer Bedeutung, da die T-Zellstimulation die ASM-Aktivierung zur Folge hat, die wiederum Ceramide freisetzt. Mit dem azidmodifizierten Phytosphingosinderivat gelang es erstmals ein azidmodifiziertes Sphingolipid nach Inkubation von Arabidopsis thaliana Setzlingen mittels CuAAC mit einem Fluoreszenzfarbstoff zu konjugieren.[258] Des Weiteren konnten die azidfunktionalisierten N-Oleoylserinole in verschiedenen Zelltypten erfolgreich eingebaut und selektiv mit Fluoreszenzfarbstoff visualisiert werden. Kofärbungen mit GFP-PKCζ und Antikörpermarkierungen von Ceramid sowie PKCζ zeigten, dass es sich bei den Enantiomeren um ceramidimitierende Lipidanaloga handelt. Somit eignen sich diese N-Oleoylserinolanaloga, um die Interaktion von Ceramiden mit der Proteinkinase Cζ zu untersuchen. Da viele natürliche Sphingolipide antibakterielle Eigenschaften aufweisen, konnte in Kooperation mit Jérôme Becam der Einsatz azidmodifizierter Ceramide als Wirkstoff gegen Neisseria meningitidis, Neisseria gonorrhoeae sowie Escherichia coli und Staphylococcus aureus untersucht werden. ωN3-C6-Cer zeigt gute bakterizide Eigenschaften gegen Neisseria meningitidis und Neisseria gonorrhoeae, ohne dabei toxisch gegenüber den Wirtszellen zu sein. Die Ceramidanaloga αN3-C6-Cer, αN3-C16-Cer und ωN3-C16-Cer weisen keine antibakteriellen Eigenschaften auf, aber sie wurden effizient in die Membran der Neisseriae eingebaut und konnten ebenfalls erfolgreich bioorthogonal markiert werden. Des Weiteren zeigten hochauflösende dSTORM-Aufnahmen der Bakterien, im Gegensatz zu Humanzellen, eine homologe Verteilung der konjugierten Ceramide. Da Ceramide eine wichtige Rolle in der Infektionsbekämpfung spielen, sind die in dieser Arbeit synthetisierten azidmodifizierten Ceramide wertvolle Werkzeuge, um die Interaktion von Bakterien mit Humanzellen zu untersuchen. Außerdem konnte im Rahmen dieser Arbeit erfolgreich eine innovative Methode entwickelt werden, um alkinpräsentierende Linker auf die Oberfläche von Nunc Covalink 96 Microtiterplatten kovalent zu binden und die Alkine konnten anschließend mittels CuAAC mit den in dieser Arbeit synthetisierten azidfunktionalisierten Lipiden zu konjugiert werden. Ziel der Methode war es potentielle Moleküle für bakterizide Oberflächenmodifikationen zu identifizieren. Mittels solcher Oberflächenmodifikationen soll die Biofilmbildung in Endotrachealtuben verhindert, und damit die Entstehung von beatmungsassozierten Pneumonien unterbunden werden. Die lipidmodifizierten Microtiterplatten sollen zukünftig auch genutzt werden, um sphingolpidaffine Proteine aus Zelllysaten zu identifizieren.
Functionalization of cells, extracellular matrix components and proteins for therapeutic application (2019)
Gutmann, Marcus
Glycosylation is a biochemical process leading to the formation of glycoconjugates by linking glycans (carbohydrates) to proteins, lipids and various small molecules. The glycans are formed by one or more monosaccharides that are covalently attached, thus offering a broad variety depending on their composition, site of glycan linkage, length and ramification. This special nature provides an exceptional and fine tunable possibility in fields of information transfer, recognition, stability and pharmacokinetic. Due to their intra- and extracellular omnipresence, glycans fulfill an essential role in the regulation of different endogenous processes (e.g. hormone action, immune surveillance, inflammatory response) and act as a key element for maintenance of homeostasis. The strategy of metabolic glycoengineering enables the integration of structural similar but chemically modified monosaccharide building blocks into the natural given glycosylation pathways, thereby anchoring them in the carbohydrate architecture of de novo synthesized glycoconjugates. The available unnatural sugar molecules which are similar to endogenous sugar molecules show minimal perturbation in cell function and - based on their multitude functional groups - offer the potential of side directed coupling with a target substance/structure as well as the development of new biological properties. The chemical-enzymatic strategy of glycoengineering provides a valuable complement to genetic approaches. This thesis primarily focuses on potential fields of application for glycoengineering and its further use in clinic and research. The last section of this work outlines a genetic approach, using special Escherichia coli systems, to integrate chemically tunable amino acids into the biosynthetic pathway of proteins, enabling specific and site-directed coupling with target substances. With the genetic information of the methanogen archaea, Methanosarcina barkeri, the E. coli. system is able to insert a further amino acid, the pyrrolysine, at the ribosomal site during translation of the protein. The natural stop-codon UAG (amber codon) is used for this newly obtained proteinogenic amino acid. Chapter I describes two systems for the integration of chemically tunable monosaccharides and presents methods for characterizing these systems. Moreover, it gives a general overview of the structure as well as intended use of glycans and illustrates different glycosylation pathways. Furthermore, the strategy of metabolic glycoengineering is demonstrated. In this context, the structure of basic building blocks and the epimerization of monosaccharides during their metabolic fate are discussed. Chapter II translates the concept of metabolic glycoengineering to the extracellular network produced by fibroblasts. The incorporation of chemically modified sugar components in the matrix provides an innovative, elegant and biocompatible method for site-directed coupling of target substances. Resident cells, which are involved in the de novo synthesis of matrices, as well as isolated matrices were characterized and compared to unmodified resident cells and matrices. The natural capacity of the matrix can be extended by metabolic glycoengineering and enables the selective immobilization of a variety of therapeutic substances by combining enzymatic and bioorthogonal reaction strategies. This approach expands the natural ability of extracellular matrix (ECM), like the storage of specific growth factors and the recruitment of surface receptors along with synergistic effects of bound substances. By the selection of the cell type, the production of a wide range of different matrices is possible. Chapter III focuses on the target-oriented modification of cell surface membranes of living fibroblast and human embryonic kidney cells. Chemically modified monosaccharides are inserted by means of metabolic glycoengineering and are then presented on the cell surface. These monosaccharides can later be covalently coupled, by “strain promoted azide-alkyne cycloaddition“ (SPAAC) and/or “copper(I)-catalyzed azide-alkyne cycloaddition“ (CuAAC), to the target substance. Due to the toxicity of the copper catalysator in the CuAAC, cytotoxicity analyses were conducted to determine the in vivo tolerable range for the use of CuAAC on living cell systems. Finally, the efficacy of both bioorthogonal reactions was compared. Chapter IV outlines two versatile carrier – spacer – payload delivery systems based on an enzymatic cleavable linker, triggered by disease associated protease. In the selection of carrier systems (i) polyethylene glycol (PEG), a well-studied, Food and Drug Administration approved substance and very common tool to increase the pharmacokinetic properties of therapeutic agents, was chosen as a carrier for non-targeting systems and (ii) Revacept, a human glycoprotein VI antibody, was chosen as a carrier for targeting systems. The protease sensitive cleavable linker was genetically inserted into the N-terminal region of fibroblast growth factor 2 (FGF-2) without jeopardizing protein activity. By exchanging the protease sensitive sequence or the therapeutic payload, both systems represent a promising and adaptable approach for establishing therapeutic systems with bioresponsive release, tailored to pre-existing conditions. In summary, by site-specific functionalization of various delivery platforms, this thesis establishes an essential cornerstone for promising strategies advancing clinical application. The outlined platforms ensure high flexibility due to exchanging single or multiple elements of the system, individually tailoring them to the respective disease or target site.
Quantitative Analysis of Membrane Components using Super-Resolution Microscopy (2019)
Letschert, Sebastian
The plasma membrane is one of the most thoroughly studied and at the same time most complex, diverse, and least understood cellular structures. Its function is determined by the molecular composition as well as the spatial arrangement of its components. Even after decades of extensive membrane research and the proposal of dozens of models and theories, the structural organization of plasma membranes remains largely unknown. Modern imaging tools such as super-resolution fluorescence microscopy are one of the most efficient techniques in life sciences and are widely used to study the spatial arrangement and quantitative behavior of biomolecules in fixed and living cells. In this work, direct stochastic optical reconstruction microscopy (dSTORM) was used to investigate the structural distribution of mem-brane components with virtually molecular resolution. Key issues are different preparation and staining strategies for membrane imaging as well as localization-based quantitative analyses of membrane molecules. An essential precondition for the spatial and quantitative analysis of membrane components is the prevention of photoswitching artifacts in reconstructed localization microscopy images. Therefore, the impact of irradiation intensity, label density and photoswitching behavior on the distribution of plasma membrane and mitochondrial membrane proteins in dSTORM images was investigated. It is demonstrated that the combination of densely labeled plasma membranes and inappropriate photoswitching rates induces artificial membrane clusters. Moreover, inhomogeneous localization distributions induced by projections of three-dimensional membrane structures such as microvilli and vesicles are prone to generate artifacts in images of biological membranes. Alternative imaging techniques and ways to prevent artifacts in single-molecule localization microscopy are presented and extensively discussed. Another central topic addresses the spatial organization of glycosylated components covering the cell membrane. It is shown that a bioorthogonal chemical reporter system consisting of modified monosaccharide precursors and organic fluorophores can be used for specific labeling of membrane-associated glycoproteins and –lipids. The distribution of glycans was visualized by dSTORM showing a homogeneous molecule distribution on different mammalian cell lines without the presence of clusters. An absolute number of around five million glycans per cell was estimated and the results show that the combination of metabolic labeling, click chemistry, and single-molecule localization microscopy can be efficiently used to study cell surface glycoconjugates. In a third project, dSTORM was performed to investigate low-expressing receptors on cancer cells which can act as targets in personalized immunotherapy. Primary multiple myeloma cells derived from the bone marrow of several patients were analyzed for CD19 expression as potential target for chimeric antigen receptor (CAR)-modified T cells. Depending on the patient, 60–1,600 CD19 molecules per cell were quantified and functional in vitro tests demonstrate that the threshold for CD19 CAR T recognition is below 100 CD19 molecules per target cell. Results are compared with flow cytometry data, and the important roles of efficient labeling and appropriate control experiments are discussed.
The Conversion of Bifidobacterium adolescentis Sucrose Phosphorylase into a Polyphenol Transglucosidase via Structure-based Enzyme Engineering (2020)
Kraus, Michael
The initial goal was the conversion of Bifidobacterium adolescentis Sucrose Phosphorylase (BaSP) into a polyphenol glucosidase by structure based enzyme engineering. BaSP was chosen because of its ability to utilize sucrose, an economically viable and sustainable donor substrate, and transfer the glucosyl moiety to various acceptor substrates. The introduction of aromatic residues into the active site was considered a viable way to render it more suitable for aromatic acceptor compounds by reducing its polarity and potentially introducing π-π-interactions with the polyphenols. An investigation of the active site revealed Gln345 as a suitable mutagenesis target. As a proof of concept BaSP Q345F was employed in the glycosylation of (+)-catechin, (-)-epicatechin and resveratrol. The variant was selective for the aromatic acceptor substrates and the glucose disaccharide side reaction was only observed after almost quantitative conversion of the aromatic substrates. A crystal structure of BaSP Q345F in complex with glucose was obtained and it displayed an unexpected shift of an entire domain by 3.3 Å. A crystal structure of BaSP D192N-Q345F, an inactive variant in complex with resveratrol-3-α-D-glucosid, the glucosylation product of resveratrol, synthesized by BaSP Q345F was solved. It proved that the domain shift is in fact responsible for the ability of the variant to glycosylate aromatic compounds. Simultaneously a ligand free crystal structure of BaSP Q345F disproved an induced fit effect as the cause of the domain shift. The missing link, a crystal structure of BaSP Q345F in the F-conformation is obtained. This does not feature the domain shift, but is in outstanding agreement with the wildtype structure. The domain shift is therefore not static but rather a step in a dynamic process. It is further conceivable that the domain shifted conformation of BaSP Q345F resembles the open conformation of the wild type and that an adjustment of a conformational equilibrium as a result of the Q345F point mutation is observed. An investigation into the background reaction, the formation of glucose-glucose disaccharides of BaSP Q345F and three further variants that addressed the same region (L341C, D316C-L341C and D316C-N340C) revealed the formation of nigerose by BaSP Q345F.
  • 1 to 10

DINI-Zertifikat     OPUS4 Logo

  • Contact
  • |
  • Imprint
  • |
  • Sitemap