Refine
Has Fulltext
- yes (11)
Is part of the Bibliography
- yes (11)
Document Type
- Doctoral Thesis (11)
Keywords
- EEG (4)
- Aufmerksamkeit (3)
- Electroencephalographie (3)
- Gehirn-Computer-Schnittstelle (2)
- Motivation (2)
- fMRI (2)
- Affekt (1)
- Alpha-Aktivität (1)
- Angst (1)
- Attention (1)
Institute
Human risk behavior is the subject of growing research in the field of psychology as well as economics. One central topic is the influence of psychological variables on risk behavior. Studies contained in this work investigated the impact of arousal, framing and motivation on risk behavior.
Arousal can on the one hand be a temporarily stable trait and on the other hand a situation-dependent variable. We showed that low trait arousal, measured via resting heart rate, predicted risky behavior. After physical exercise, state arousal was heightened in the experiment. Participants tended to act less risky after physical exercise. Taken together, the results suggest an inverse relation of arousal and risk behavior. Most studies investigating risk behavior employ a payment method that we call pay-one method: although the gambles that are used consist of many trials, only one trial is paid out. We investigated the effect of the payment method on risk behavior by employing both the pay-one and a pay-all method, which pays out all trials, in a within-subjects design. We found that participants acted about 10% less risky in the pay-one condition compared to the pay-all condition. This result suggests that risk-aversion is over-estimated in common risk paradigms that use the pay-one method.
When we worked on a hard task before, we like to engage in a more likable task afterwards. That observation led to the general classification of tasks in want-to and have-to tasks. Our body system strives towards a balance between those two task types in the sense of a homeostasis. We assessed event-related potentials (ERPs) in a risk game that we treated as a want-to task. When participants worked on a difficult have-to task before, amplitudes of the ERP-components in the risk game were raised compared to a condition where participants worked on an easy task before. We conclude that the motivation shift towards a want-to task after a have-to task can be assessed via ERP amplitudes.
In conclusion, it was shown that arousal, framing and motivation are important psychological variables that influence risk behavior. The specific mechanisms of these influences have been investigated and discussed.
Angsterkrankungen sowie die posttraumatische Belastungsstörung sind weit verbreitete psychische Erkrankungen. Trotz gut evaluierter Therapiemethoden gibt es immer noch therapierefraktäre oder rezidivierend erkrankende Patienten, für die nicht-invasive Hirnstimulationsverfahren wie die transkranielle Gleichstromstimulation (tDCS) eine zusätzliche Option darstellen können. Diese Studie untersuchte daher die förderliche Wirkung der tDCS auf das Extinktionslernen, dem neuronalen Hintergrundmechanismus der Expositionstherapie. Für die Untersuchung der Extinktionsprozesse wurde ein Ein-Tages-Furchtkonditionierungsparadigma mit weiblichen Gesichtern als konditionierte Stimuli (CS) und einem 95 dB lauten weiblichen Schrei als unkonditionierten Stimulus verwendet. Die tDCS zielte darauf ab den ventromedialen präfrontalen Kortex (vmPFC), ein wichtiges Kontrollareal der Extinktion, zu aktivieren, wohingegen furchtgenerierende dorsomediale Hirnareale von der Stimulation ausgespart bleiben sollten. Hierfür wurden zwei ca. 4 x 4 cm große Elektroden in bitemporaler Anordnung etwas unterhalb der EEG 10-20-Positionen F7 und F8 appliziert und ein Gleichstrom mit einer Stärke von 1.5 mA verwendet. Die 20- minütige Stimulation startete während einer 10-minütigen Pause zwischen Akquisition und Extinktion und lief bis zum Ende der Extinktion durch. Die gesunden Probanden wurden randomisiert und doppelt verblindet zwei sham- und zwei real-Stimulationsgruppen mit jeweils entgegengesetzten Stromflussrichtungen zugeordnet. Zur Messung der Furchtreaktion dienten die elektrodermale Reaktion sowie subjektive Arousal- und Valenzbewertungen. Zusätzlich wurde die Kontingenzerwartung sowie verschiedene Fragebögen zu Depressivität, Affekt, State- und Trait-Angst, Angstsensitivität und Händigkeit erhoben. Die Untersuchung der Effekte von tDCS und Stromflussrichtung erfolgte bei allen erfolgreich konditionierten Probanden (N = 84) mittels generalisierten Schätzgleichungen. Erwartet wurde insbesondere eine Verbesserung des frühen Extinktionslernens in den real-Stimulationsgruppen, wobei vermutetet wurde, dass rechts und links anodaler Stromfluss nicht zu identischen Resultaten führen würde. Die Ergebnisse wiesen auf eine Verbesserung der frühen Extinktion unter tDCS hin. Der Effekt spiegelte sich in den Maßen der elektrodermalen Aktivität in einer stärkeren Reduktion der CS+/CS- Diskrimination und einem beschleunigten Reaktionsverlust auf CS+ wider. Der vermittelnde Mechanismus kann im intendierten Aktivitätsanstieg des vmPFC liegen, eine Steigerung der dopaminergen Neurotransmission ist jedoch ebenso denkbar. Zusätzlich ist auch die Verbesserung der Prozessierung von prediction errors durch die Veränderung der Dopaminsekretion bzw. Aktivitätssteigerung im vmPFC, Orbitofrontalkortex und mittleren temporalen Gyrus möglich. Die subjektiven Valenz- und Arousalbewertungen zeigten sich während des gesamten Experiments unbeeinflusst von der tDCS. Neben diesem Haupteffekt kam es zu weiteren nicht erwarteten Effekten. Einer dieser bedeutsamen Nebeneffekte war ein kurzer initialer Reaktionsanstieg auf den CS- zu Beginn des ersten und zweiten Extinktionsblocks in beiden real-Stimulationsgruppen, der u. a. mitverantwortlich für deren stärkeren Verlust der CS+/CS- Diskrimination war. Auch negative Auswirkungen auf die stimulierten Personen – insbesondere in Kombination mit Angsterkrankungen – können eine denkbare Folge hiervon sein. Daher stellt dieser Nebeneffekt eine wichtige Limitation des Hauptergebnisses dar, dessen Ursachen dringend in weiteren Studien evaluiert werden sollten. Als mögliche Gründe werden ein Verlust der Sicherheitsinformation des CS-, Angstgeneralisierungseffekte sowie ein erhöhtes Maß an sustained fear vermutet. Darüber hinaus wurden unerwarteterweise auch keinerlei Unterschiede der Stromflussrichtung während der frühen Extinktion manifest, in der späten bzw. gesamten Extinktion zeigten sich jedoch verschiedene Vor- und Nachteile. Vorteilhaft an der rechts anodalen im Vergleich zur links anodalen Stimulation war ein geringerer gemittelter Reaktionsanstieg auf CS+ und CS- zu Beginn des zweiten Extinktionsblocks. Dieser Effekt beruhte vermutlich auf einer Steigerung der Emotionsregulation durch Stimulation des rechten inferioren frontalen Gyrus. Als nachteilig erwies sich jedoch, dass die Reduktion der State-Angst während der Extinktion unter rechts anodaler tDCS geringer ausfiel. Bei Angstpatienten gibt es Hinweise auf eine Unteraktivierung des linken Frontalkortex, sodass angstreduzierende Effekte durch linksfrontale Aktivierung denkbar sind. Die Wahl der Stromflussrichtung sollte demnach je nach gewünschten Effekten und Angstausmaß der stimulierten Probanden abgewogen werden. Aufgrund der experimentellen Anordnung ergeben sich einige Limitationen dieser Studie. Der gesamte Extinktionsvorgang war in allen Gruppen nur von sehr kurzer Dauer, dadurch hielten auch die positiven Effekte in den real-Stimulationsgruppen nicht lange an. Zudem fand keine Testung des Extinktionsrecalls statt, sodass keine Aussage über die langfristige Wirkung der tDCS gemacht werden kann. Da die Stimulation direkt nach der Akquisition gestartet wurde, kann es neben bzw. anstelle einer Verbesserung des Extinktionslernens auch zu einer Störung der Furchtkonsolidierung und dadurch zu einer geringeren Furchtexpression gekommen sein. Zudem ist der vmPFC, das Hauptstimulationsziel dieser Studie, ebenso an der Suppression von Furchtreaktionen beteiligt, somit könnte auch dieser Mechanismus für die gefundenen Effekte verantwortlich sein. Eine Replikation der Studienergebnisse in einem mehrtägigem Konditionierungsparadigma wäre damit sinnvoll, um die Dauer und Hintergründe der gefundenen Effekte besser zu verstehen. Insgesamt bilden die Ergebnisse dieser Studie eine gute Basis zur Anwendung der tDCS des vmPFC zur Verbesserung des Extinktionslernens. Die Schwächen des hier getesteten Stimulationsprotokolls sollten jedoch in künftigen Studien weiter evaluiert und reduziert werden. Falls Testungen an Angstpatienten schließlich zu Erfolgen führen, könnte die tDCS des vmPFC als günstige und leicht anwendbare Ergänzung zu Expositionstherapien bei Patienten mit bisher therapieresistenten oder rezidivierenden Angsterkrankungen eingesetzt werden.
The present work comprises four studies dealing with the investigation of the auditory event-related potentials (ERP) Mismatch Negativity (MMN), P300, and N400 under different attentional instructions, and with their application in patients with disorders of consciousness (DOC) to assess residual cognitive functioning. In guided interviews (study 1), practitioners working with DOC patients stated their general interest in and an objective need for the complementation of current diagnostic procedures by reliable and valid ERP-based methods. Subsequently, in study 2, simple oddball and semantic paradigms were applied to 19 behaviorally non-responsive DOC patients revealing the presence of at least one ERP in eight patients investigated. In the third and fourth study, specific attentional effects on ERPs were investigated in healthy participants to define optimal instructions and stimulus parameters. In study 3, MMN and N400 amplitudes were assessed in 18 participants, and in study 4, MMN and P300 amplitudes were assessed in 32 participants. Both studies included an ignore task (attention on simultaneous visual stimuli), a passive task, and a focused task and revealed distinct attentional effects on P300 and N400 with largest amplitudes in the focused task, smaller ones in the passive task and no ERP in the ignore task. An MMN was elicited in all tasks, but still, amplitudes differed as a function of task. In addition, study 4 included oddball paradigms comprising several deviants in different dimensions. Higher amplitudes were found in this multifeature paradigm compared to traditional oddball paradigms and larger amplitudes were elicited by deviants highly different from standards. It is concluded that ERPs represent a promising tool to complement clinical assessment of DOC patients. Application of ERP paradigms should include focused instructions, especially when using semantic material. Furthermore, multifeature paradigms have been proven especially useful eliciting large amplitudes and allowing for the investigation of several dimensions of deviants at the same time.
Brain-computer interfaces (BCIs) are devices that translate signals from the brain into control commands for applications. Within the last twenty years, BCI applications have been developed for communication, environmental control, entertainment, and substitution of motor functions. Since BCIs provide muscle independent communication and control of the environment by circumventing motor pathways, they are considered as assistive technologies for persons with neurological and neurodegenerative diseases leading to motor paralysis, such as amyotrophic lateral sclerosis (ALS), muscular dystrophy, spinal muscular atrophy and stroke (Kübler, Kotchoubey, Kaiser, Wolpaw, & Birbaumer, 2001). Although most researcher mention persons with severe motor impairment as target group for their BCI systems, most studies include healthy participants and studies including potential BCI end-users are sparse. Thus, there is a substantial lack of studies that investigate whether results obtained in healthy participants can be transferred to patients with neurodegenerative diseases. This clearly shows that BCI research faces a translational gap between intense BCI research and bringing BCI applications to end-users outside the lab (Kübler, Mattia, Rupp, & Tangermann, 2013). Translational studies are needed that investigate whether BCIs can be successfully used by severely disabled end-users and whether those end-users would accept BCIs as assistive devices. Another obvious discrepancy exists between a plethora of short-term studies and a sparse number of long-term studies. BCI research thus also faces a reliability gap (Kübler, Mattia, et al., 2013). Most studies present only one BCI session, however the few studies that include several testing sessions indicate high inter- and intra-individual variance in the end-users’ performance due to non-stationarity of signals. Long-term studies, however, are needed to demonstrate whether a BCI can be reliably used as assistive device over a longer period of time in the daily-life of a person. Therefore there is also a great need for reliability studies.
The purpose of the present thesis was to address these research gaps and to bring BCIs closer to end-users in need, especially into their daily-lives, following a user-centred design (UCD). The UCD was suggested as theoretical framework for bringing BCIs to end-users by Kübler and colleagues (Kübler et al., 2014; Zickler et al., 2011). This approach aims at the close and iterative interaction between BCI developers and end-users with the final goal to develop BCI systems that are accepted as assistive devices by end-users. The UCD focuses on usability, that is, how well a BCI technology matches the purpose and meets the needs and requirements of the targeted end-users and was standardized with the ISO 9241-210.
Within the UCD framework, usability of a device can be defined with regard to its effectiveness, efficiency and satisfaction. These aspects were operationalized by Kübler and colleagues to evaluate BCI-controlled applications. As suggested by Vaughan and colleagues, the number of BCI sessions, the total usage duration and the impact of the BCI on the life of the person can be considered as indicators of usefulness of the BCI in long-term daily-life use (Vaughan, Sellers, & Wolpaw, 2012). These definitions and metrics for usability and usefulness were applied for evaluating BCI applications as assistive devices in controlled settings and independent use. Three different BCI applications were tested and evaluated by in total N=10 end-users: In study 1 a motor-imagery (MI) based BCI for gaming was tested by four end-users with severe motor impairment. In study 2, a hybrid P300 event-related (ERP) based BCI for communication was tested by four severely motor restricted end-users with severe motor impairment. Study 1 and 2 are short-term studies conducted in a controlled-setting. In study 3 a P300-ERP BCI for creative expression was installed for long-term independent use at the homes of two end-users in the locked-in state. Both end-users are artists who had gradually lost the ability to paint after being diagnosed with ALS.
Results reveal that BCI controlled devices are accepted as assistive devices. Main obstacles for daily-life use were the not very aesthetic design of the EEG-cap and electrodes (cap is eye-catching and looks medical), low comfort (cables disturb, immobility, electrodes press against head if lying on a head cushion), complicated and time-consuming adjustment, low efficiency and low effectiveness, and not very high reliability (many influencing factors). While effectiveness and efficiency in the MI based BCI were lower compared to applications using the P300-ERP as input channel, the MI controlled gaming application was nevertheless better accepted by the end-users and end-users would rather like to use it compared to the communication applications. Thus, malfunctioning and errors, low speed, and the EEG cap are rather tolerated in gaming applications, compared to communication devices. Since communication is essential for daily-life, it has to be fast and reliable. BCIs for communication, at the current state of the art, are not considered competitive with other assistive devices, if other devices, such as eye-gaze, are still an option. However BCIs might be an option when controlling an application for entertainment in daily-life, if communication is still available. Results demonstrate that BCI is adopted in daily-life if it matches the end-users needs and requirements. Brain Painting serves as best representative, as it matches the artists’ need for creative expression. Caveats such as uncomfortable cap, dependence on others for set-up, and experienced low control are tolerated and do not prevent BCI use on a daily basis. Also end-users in real need of means for communication, such as persons in the locked-in state with unreliable eye-movement or no means for independent communication, do accept obstacles of the BCI, as it is the last or only solution to communicate or control devices. Thus, these aspects are “no real obstacles” but rather “challenges” that do not prevent end-users to use the BCI in their daily-lives. For instance, one end-user, who uses a BCI in her daily-life, stated: “I don’t care about aesthetic design of EEG cap and electrodes nor amplifier”. Thus, the question is not which system is superior to the other, but which system is best for an individual user with specific symptoms, needs, requirements, existing assistive solutions, support by caregivers/family etc.; it is thereby a question of indication. These factors seem to be better “predictors” for adoption of a BCI in daily-life, than common usability criterions such as effectiveness or efficiency. The face valid measures of daily-life demonstrate that BCI-controlled applications can be used in daily-life for more than 3 years, with high satisfaction for the end-users, without experts being present and despite a decrease in the amplitude of the P300 signal. Brain Painting re-enabled both artists to be creatively active in their home environment and thus improved their feelings of happiness, usefulness, self-esteem, well-being, and consequently quality of life and supports social inclusion. This thesis suggests that BCIs are valuable tools for people in the locked-in state.
Gambling is a popular activity in Germany, with 40% of a representative sample reporting having gambled at least once in the past year (Bundeszentrale für gesundheitliche Aufklärung, 2014). While the majority of gamblers show harmless gambling behavior, a subset develops serious problems due to their gambling, affecting their psychological well-being, social life and work. According to recent estimates, up to 0.8% of the German population are affected by such pathological gambling. People in general and pathological gamblers in particular show several cognitive distortions, that is, misconceptions about the chances of winning and skill involvement, in gambling. The current work aimed at elucidating the biopsychological basis of two such kinds of cognitive distortions, the illusion of control and the gambler’s and hot hand fallacies, and their modulation by gambling problems. Therefore, four studies were conducted assessing the processing of near outcomes (used as a proxy for the illusion of control) and outcome sequences (used as a proxy for the gambler’s and hot hand fallacies) in samples of varying degrees of gambling problems, using a multimethod approach.
The first study analyzed the processing and evaluation of near outcomes as well as choice behavior in a wheel of fortune paradigm using electroencephalography (EEG). To assess the influence of gambling problems, a group of problem gamblers was compared to a group of controls. The results showed that there were no differences in the processing of near outcomes between the two groups. Near compared to full outcomes elicited smaller P300 amplitudes. Furthermore, at a trend level, the choice behavior of participants showed signs of a pattern opposite to the gambler’s fallacy, with longer runs of an outcome color leading to increased probabilities of choosing this color again on the subsequent trial. Finally, problem gamblers showed smaller feedback-related negativity (FRN) amplitudes relative to controls.
The second study also targeted the processing of near outcomes in a wheel of fortune paradigm, this time using functional magnetic resonance imaging and a group of participants with varying degrees of gambling problems. The results showed increased activity in the bilateral superior parietal cortex following near compared to full outcomes.
The third study examined the peripheral physiology reactions to near outcomes in the wheel of fortune. Heart period and skin conductance were measured while participants with varying degrees of gambling problems played on the wheel of fortune. Near compared to full outcomes led to increased heart period duration shortly after the outcome. Furthermore, heart period reactions and skin conductance responses (SCRs) were modulated by gambling problems. Participants with high relative to low levels of gambling problems showed increased SCRs to near outcomes and similar heart period reactions to near outcomes and full wins.
The fourth study analyzed choice behavior and sequence effects in the processing of outcomes in a coin toss paradigm using EEG in a group of problem gamblers and controls. Again, problem gamblers showed generally smaller FRN amplitudes compared to controls. There were no differences between groups in the processing of outcome sequences. The break of an outcome streak led to increased power in the theta frequency band. Furthermore, the P300 amplitude was increased after a sequence of previous wins. Finally, problem gamblers compared to controls showed a trend of switching the outcome symbol relative to the previous outcome symbol more often.
In sum, the results point towards differences in the processing of near compared to full outcomes in brain areas and measures implicated in attentional and salience processes. The processing of outcome sequences involves processes of salience attribution and violation of expectations. Furthermore, problem gamblers seem to process near outcomes as more win-like compared to controls. The results and their implications for problem gambling as well as further possible lines of research are discussed.
Frontal asymmetry, a construct invented by Richard Davidson, linking positive and negative valence as well as approach and withdrawal motivation to lateralized frontal brain activation has been investigated for over thirty years. The frontal activation patterns described as relevant were measured via alpha-band frequency activity (8-13 Hz) as a measurement of deactivation in electroencephalography (EEG) for homologous electrode pairs, especially for the electrode position F4/ F3 to account for the frontal relative lateralized brain activation.
Three different theories about frontal activation patterns linked to motivational states were investigated in two studies. The valence theory of Davidson (1984; 1998a; 1998b) and its extension to the motivational direction theory by Harmon-Jones and Allen (1998) refers to the approach motivation with relative left frontal brain activity (indicated by relative right frontal alpha activity) and to withdrawal motivation with relative right frontal brain activation (indicated by relative left frontal alpha activity). The second theory proposed by Hewig and colleagues (2004; 2005; 2006) integrates the findings of Davidson and Harmon – Jones and Allen with the reinforcement sensitivity theory of Jeffrey A. Gray (1982, 1991). Hewig sees the lateralized frontal approach system and withdrawal system proposed by Davidson as subsystems of the behavioral activation system proposed by Gray and bilateral frontal activation as a biological marker for the behavioral activation system. The third theory investigated in the present studies is the theory from Wacker and colleagues (2003; 2008; 2010) where the frontal asymmetrical brain activation patterns are linked to the revised reinforcement sensitivity theory of Gray and McNaughton (2000). Here, right frontal brain activity (indicated by lower relative right frontal alpha activity) accounts for conflict, behavioral inhibition and activity of the revised behavioral inhibition system, while left frontal brain activation (indicated by lower relative left frontal alpha activity) stands for active behavior and the activity of the revised behavioral activation system as well as the activation of the revised flight fight freezing system. In order to investigate these three theories, a virtual reality T-maze paradigm was introduced to evoke motivational states in the participants, offering the opportunity to measure frontal brain activation patterns via EEG and behavior simultaneously in the first study. In the second study the virtual reality paradigm was additionally compared to mental imagery and a movie paradigm, two well-known state inducing paradigms in the research field of frontal asymmetry.
In the two studies, there was confirming evidence for the theory of Hewig and colleages (2004; 2005; 2006), showing higher bilateral frontal activation for active behavior and lateralized frontal activation patterns for approach (left frontal brain activation) and avoidance (right frontal brain activation) behavior. Additionally a limitation for the capability model of anterior brain asymmetry proposed by Coan and colleagues (2006), where the frontal asymmetry should be dependent on the relevant traits driving the frontal asymmetry pattern if a relevant situation occurs, could be found. As the very intense virtual reality paradigm did not lead to a difference of frontal brain activation patterns compared to the mental imagery paradigm or the movie paradigm for the traits of the participants, the trait dependency of the frontal asymmetry in a relevant situation might not be given, if the intensity of the situation exceeds a certain level. Nevertheless there was an influence of the traits in the virtual reality T-maze paradigm, because the shown behavior in the maze was trait-dependent.
The implications of the findings are multifarious, leading from possible objective personality testing via diversification of the virtual reality paradigm to even clinical implications for depression treatments based on changes in the lateralized frontal brain activation patterns for changes in the motivational aspects, but also for changes in bilateral frontal brain activation when it comes to the drive and preparedness for action in patients. Finally, with the limitation of the capability model, additional variance in the different findings about frontal asymmetry can be explained by taking the intensity of a state manipulation into account.
Brain computer interfaces based on sensorimotor rhythms modulation (SMR-BCIs) allow people to emit commands to an interface by imagining right hand, left hand or feet movements. The neurophysiological activation associated with those specific mental imageries can be measured by electroencephalography and detected by machine learning algorithms. Improvements for SMR-BCI accuracy in the last 30 years seem to have reached a limit. The currrent main issue with SMR-BCIs is that between 15% to 30% cannot use the BCI, called the "BCI inefficiency" issue. Alternatively to hardware and software improvements, investigating the individual characteristics of the BCI users has became an interesting approach to overcome BCI inefficiency. In this dissertation, I reviewed existing literature concerning the individual sources of variation in SMR-BCI accuracy and identified generic individual characteristics. In the empirical investigation, attention and motor dexterity predictors for SMR-BCI performance were implemented into a trainings that would manipulate those predictors and lead to higher SMR-BCI accuracy. Those predictors were identified by Hammer et al. (2012) as the ability to concentrate (associated with relaxation levels) and "mean error duration" in a two-hand visuo-motor coordination task (VMC). Prior to a SMR-BCI session, a total of n=154 participants in two locations took part of 23 min sessions of either Jacobson’s Progressive Muscle Relaxation session (PMR), a VMC session, or a control group (CG). No effect of PMR or VMC manipulation was found, but the manipulation checks did not consistently confirm whether PMR had an effect of relaxation levels and VMC on "mean error duration". In this first study, correlations between relaxation levels or "mean error duration" and accuracy were found but not in both locations. A second study, involving n=39 participants intensified the training in four sessions on four consecutive days or either PMR, VMC or CG. The effect or manipulation was assessed for in terms of a causal relationship by using a PRE-POST study design. The manipulation checks of this second study validated the positive effect of training on both relaxation and "mean error duration". But the manipulation did not yield a specific effect on BCI accuracy. The predictors were not found again, displaying the instability of relaxation levels and "mean error duration" in being associated with BCI performance. An effect of time on BCI accuracy was found, and a correlation between State Mindfulness Scale and accuracy were reported. Results indicated that a short training of PMR or VMC were insufficient in increasing SMR-BCI accuracy. This study contrasted with studies succeeding in increasing SMR-BCI accuracy Tan et al. (2009, 2014), by the shortness of its training and the relaxation training that did not include mindfulness. It also contrasted by its manipulation checks and its comprehensive experimental approach that attempted to replicate existing predictors or correlates for SMR-BCI accuracy. The prediction of BCI accuracy by individual characteristics is receiving increased attention, but requires replication studies and a comprehensive approach, to contribute to the growing base of evidence of predictors for SMR-BCI accuracy. While short PMR and VMC trainings could not yield an effect on BCI performance, mindfulness meditation training might be beneficial for SMR-BCI accuracy. Moreover, it could be implemented for people in the locked-in-syndrome, allowing to reach the end-users that are the most in need for improvements in BCI performance.
Biologische Marker für Aufmerksamkeitsverzerrungen bei sozialer Ängstlichkeit und deren Modifikation
(2019)
Diese Dissertationsschrift beschäftigt sich mit biologischen Korrelaten von Aufmerksamkeits-verzerrungen und eruiert deren Modifikation in einem längsschnittlich angelegten Experiment. Hierfür wurden über 100 sozial-ängstliche Teilnehmer mit Hilfe einer Screening-Prozedur gewonnen und hinsichtlich der Ausprägung einer ereigniskorrelierten Lateralisation namens „N2pc“ untersucht.
Während der ersten Labormessung indizierte die N2pc bei der Bearbeitung eines Dot Probe Paradigmas einen mittelgroßen, statistisch hochbedeutsamen Attentional Bias hin zu wütenden Gesichtern im Vergleich zu neutralen. Das hierfür klassischerweise verwendete Maß von Reaktionszeitunterschieden hingegen konnte diese Verzerrung der Aufmerksamkeit nicht abbilden. Ferner zeigten weder die elektrophysiologische noch die behaviorale Messgröße einen Zusammenhang mit Fragebögen sozialer Angst, was teilweise auf ein Fehlen interner Konsistenz zurückgeführt werden kann.
Im weiteren Verlauf absolvierten die überwiegend weiblichen Teilnehmer an acht unterschiedlichen Terminen über zwei bis vier Wochen fast 7000 Durchgänge eines Aufmerksamkeitsverzerrungsmodifikationstrainings oder einer aktiven Kontrollprozedur. Daraufhin zeigte sich eine Auslöschung der ereigniskorrelierten Lateralisation, allerdings in einem späteren Zeitfenster als erwartet. Dieses Verschwinden des Attentional Bias blieb bis elf Wochen nach Ende der Trainingsprozedur stabil. Außerdem trat dieselbe Modifikation ebenfalls für die Kontrollgruppe auf. Die selbstberichtete Schwere der Symptomausprägung veränderte sich zwar nicht, allerdings konnte eine Reduktion des Persönlichkeitsmerkmals Neurotizismus verzeichnet werden, welches konzeptuell mit dem Begriff der Ängstlichkeit eng verwoben ist.
Durch explorative Folgeanalysen konnte eine stärkere Modulation der rechten Großhirnhälfte, also durch Reize im linken visuellen Halbfeld aufgedeckt werden. Eine Neuberechnung des Attentional Bias separat für jede Hemisphäre scheint daher auch für künftige Untersuchungen angebracht. Ferner wurde als Träger der Modifikation über die Zeit eine Veränderung der Hyperpolarisation nach der N2-Komponente identifiziert. Ob durch eine Anpassung der Prozedur eine Modulation einer früheren ereigniskorrelierten Komponente erzielt werden kann, bleibt zum aktuellen Zeitpunkt unbeantwortet.
The present dissertation aims to shed light on different mechanisms of socio-emotional feedback in social decision-making situations. The objective is to evaluate emotional facial expressions as feedback stimuli, i.e., responses of interaction partners to certain social decisions. In addition to human faces, artificial emojis are also examined due to their relevance for modern digital communication. Previous research on the influence of emotional feedback suggests that a person's behavior can be effectively reinforced by rewarding stimuli. In the context of this dissertation, the differences in the feedback processing of human photographs and emojis, but also the evaluation of socially expected versus socially unexpected feedback were examined in detail in four studies. In addition to behavioral data, we used the electroencephalogram (EEG) in all studies to investigate neural correlates of social decision-making and emotional feedback.
As the central paradigm, all studies were based on a modified ultimatum game. The game is structured as follows: there is a so-called proposer who holds a specific amount of money (e.g., 10 cents) and offers the responder a certain amount (e.g., 3 cents). The responder then decides whether to accept or reject the offer. In the version of the ultimatum game presented here, different types of proposers are introduced. After the participants have accepted or rejected in the role of the responder, the different proposers react to the participant’s decision with specific emotional facial expressions. Different feedback patterns are used for the individual experiments conducted in the course of this dissertation.
In the first study, we investigated the influence of emotional feedback on decision-making in the modified version of the ultimatum game. We were able to show that a proposer who responds to the acceptance of an offer with a smiling face achieves more accepted offers overall than a control proposer who responds to both accepted and rejected offers with a neutral facial expression. Consequently, the smile served as a positive reinforcement. Similarly, a sad expression in response to a rejected offer also resulted in higher acceptance rates as compared to the control identity, which could be considered an expression of compassion for that proposer. On a neuronal level, we could show that there are differences between simply looking at negative emotional stimuli (i.e., sad and angry faces) and their appearance as feedback stimuli after rejected offers in the modified ultimatum game. The so-called feedback-related negativity was reduced (i.e., more positive) when negative emotions appeared as feedback from the proposers. We argued that these findings might show that the participants wanted to punish the proposers by rejecting an offer for its unfairness and therefore the negative feedback met their expectations. The altered processing of negative emotional facial expressions in the ultimatum game could therefore indicate that the punishment is interpreted as successful. This includes the expectation that the interaction partner will change his behavior in the future and eventually make fairer offers.
In the second study we wanted to show that smiling and sad emojis as feedback stimuli in the modified ultimatum game can also lead to increased acceptance rates. Contrary to our assumptions, this effect could not be observed. At the neural level as well, the findings did not correspond to our assumptions and differed strongly from those of the first study. One finding, however, was that the neural P3 component showed how the use of emojis as feedback stimuli particularly characterizes certain types of proposers. This is supported by the fact that the P3 is increased for the proposer who rewards an acceptance with a smile as well as for the proposer who reacts to rejection with a sad emoji compared to the neutral control proposer.
The third study examined the discrepancy between the findings of the first and second study. Accordingly, both humans and emojis representing the different proposers were presented in the ultimatum game. In addition, emojis were selected that showed a higher similarity to known emojis from common messenger services compared to the second study. We were able to replicate that the proposers in the ultimatum game, who reward an acceptance of the offer with a smile, led to an increased acceptance rate compared to the neutral control proposers. This difference is independent of whether the proposers are represented by emojis or human faces. With regard to the neural correlates, we were able to demonstrate that emojis and human faces differ strongly in their neural processing. Emojis showed stronger activation than human faces in the face-processing N170 component, the feedback-related negativity and the P3 component. We concluded that the results of the N170 and feedback-related negativity could indicate a signal for missing social information of emojis compared to faces. The increased P3 amplitude for emojis might imply that emojis appear unexpectedly as reward stimuli in a social decision task compared to human faces.
The last study of this project dealt with socially unexpected feedback. In comparison to the first three studies, new proposer identities were implemented. In particular, the focus was on a proposer who reacted to the rejection of an offer unexpectedly with a smile and to the acceptance with a neutral facial expression. According to the results, participants approach this unexpected smile through increased rejection, although it is accompanied by financial loss. In addition, as reported in studies one and three, we were able to show that proposers who respond to the acceptance of an offer with a smiling face and thus meet the expectations of the participants have higher offer acceptance rates than the control proposer. At the neuronal level, especially the feedback from the socially unexpected proposer led to an increased P3 amplitude, which indicates that smiling after rejection is attributed a special subjective importance.
The experiments provide new insights into the social influence through emotional feedback and the processing of relevant social cues. Due to the conceptual similarity of the studies, it was possible to differentiate between stable findings and potentially stimulus-dependent deviations, thus creating a well-founded contribution to the current research. Therefore, the novel paradigm presented here, and the knowledge gained from it could also play an important role in the future for clinical questions dealing with limited social competencies.
Humans in our environment are of special importance to us. Even if our minds are
fixated on tasks unrelated to their presence, our attention will likely be drawn
towards other people’s appearances and their actions.
While we might remain unaware of this attentional bias at times, various studies have demonstrated the preferred visual scanning of other humans by recording eye movements in laboratory settings. The present thesis aims to investigate the circumstances under and the mechanisms by which this so-called social attention operates.
The first study demonstrates that social features in complex naturalistic scenes are prioritized in an automatic fashion. After 200 milliseconds of stimulus presentation, which is too brief for top-down processing to intervene, participants targeted image areas depicting humans significantly more often than would be expected from a chance distribution of saccades. Additionally, saccades towards these areas occurred earlier in time than saccades towards non-social image regions. In the second study, we show that human features receive most fixations even when bottom-up information is restricted; that is, even when only the fixated region was visible and the remaining parts of the image masked, participants still fixated on social image regions longer than on regions without social cues. The third study compares the influence of real and artificial faces on gaze patterns during the observation of dynamic naturalistic videos. Here we find that artificial faces, belonging to humanlike statues or machines, significantly predicted gaze allocation but to a lesser extent than real faces. In the fourth study, we employed functional magnetic resonance imaging to investigate the neural correlates of reflexive social attention. Analyses of the evoked blood-oxygenation level dependent responses pointed to an involvement of striate and extrastriate visual cortices in the encoding of social feature space.
Collectively, these studies help to elucidate under which circumstances social
features are prioritized in a laboratory setting and how this prioritization might be achieved on a neuronal level. The final experimental chapter addresses the question whether these laboratory findings can be generalized to the real world. In this study, participants were introduced to a waiting room scenario in which they interacted with a confederate. Eye movement analyses revealed that gaze behavior heavily depended on the social context and were influenced by whether an interaction is currently desired. We further did not find any evidence for altered gaze behavior in socially anxious participants. Alleged gaze avoidance or hypervigilance in social
anxiety might thus represent a laboratory phenomenon that occurs only under very specific real-life conditions. Altogether the experiments described in the present
thesis thus refine our understanding of social attention and simultaneously
challenge the inferences we can draw from laboratory research.