Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2023 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- BRET (1)
- FRET (1)
- Fluoreszenz-Resonanz-Energie-Transfer (1)
- Förster Resonanz Energie Transfer (1)
- G-Protein gekoppelter Rezeptor (1)
- GPCR (1)
- PTH1R (1)
- RAMP (1)
- pharmacology (1)
Institute
Sonstige beteiligte Institutionen
The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions.
Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive.
This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation.
I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors.
These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR
function and advanced drug design.