Refine
Has Fulltext
- yes (10)
Is part of the Bibliography
- yes (10)
Document Type
- Doctoral Thesis (10)
Keywords
- Blazar (4)
- Aktiver galaktischer Kern (3)
- Radioastronomie (3)
- Gammastrahlung (2)
- Radio astronomy (2)
- Röntgenastronomie (2)
- AGN (1)
- Active Galactic Nuclei (1)
- Active Galaxies (1)
- Active galactic nucleus (1)
Die vorliegende Arbeit beschäftigt sich mit den Prozessen, die in einer Unterklasse der Aktiven Galaxienkerne, den Blazaren, das Emissionsspektrum dieser Objekte erzeugen. Dies beinhaltet insbesondere den Beschleunigungsprozess, der eine nichtthermische Teilchenverteilung erzeugt, sowie diverse Strahlungsprozesse. Das Spektrum dieser Quellen reicht dabei vom Radiobereich bis zu Energien im TeV-Bereich. Die Form des zeitlich gemittelten Spektrums kann durch Modelle bereits sehr gut beschrieben werden. Insbesondere die erste der beiden dominierenden Komponenten des Spektrums kann mit hoher Sicherheit mit Synchrotronemission einer Elektronenenergieverteilung in Form eines Potenzgesetzes identifiziert werden. Für den Ursprung der zweiten Komponente existieren jedoch verschiedene Erklärungsversuche. Dies sind im wesentlichen die inverse Compton-Streuung der internen oder externer Strahlung (leptonische Modelle) sowie die Emission und photohadronische Wechselwirkung einer hochenergetischen Verteilung von Protonen in der Quelle.
Eine räumliche Auflösung des Ursprungs der detektierten Strahlung ist mit den zur Verfügung stehenden Teleskopen nicht möglich. Einschränkungen für die Ausdehnung dieser Emissionszone ergeben sich lediglich aus der Variation des Emissionsspektrums. Eine Bestimmung der Morphologie ist jedoch im selbstabsorbierten Radiobereich des Spektrums durch die Ausnutzung von interferometrischen Beobachtungen möglich. Die resultierenden Längen, auf denen die im inneren der Quelle selbstabsorbierte Strahlung die Quelle schließlich verlässt, sind jedoch etwa zwei Größenordnungen oberhalb der aus den Variabilitätszeitskalen gefolgerten Limits.
Das im Rahmen dieser Arbeit entwickelte Modell soll dabei helfen, verschiedene Beobachtungen mit Hilfe eines quantitativen Modells zu beschreiben. Hier steht insbesondere die Korrelation zwischen den Verläufen der Hochenergie- und Radioemission im Vordergrund. Eine Aussage über die Existenz einer solchen Verbindung konnte aus den bisherigen Beobachtungen nicht getroffen werden.
Eine quantitative Modellierung könnte bei der Interpretation der bisher uneindeutigen Datenlage helfen. Eine weitere, durch Modelle bisher nicht beschreibbare, Beobachtungsevidenz sind extrem kurzzeitige Variationen des Flusszustands.
Die Lichtlaufzeit durch das für die Modellierung benötigte Raumgebiet ist zumeist größer als die beobachtete Zeitskala.
Zudem deuten die Beobachtungen darauf hin, dass manche dieser Flussausbrüche nicht zwischen den verschiedenen Bändern korreliert sind, wie es zumindest die leptonischen Modelle erwarten lassen würden.
Das hier beschriebene Modell verbindet eine räumliche Auflösung des Emissionsgebiets mit dem dominanten Beschleunigungsmechanismus. Hierdurch konnte zunächst gezeigt werden, dass die Beschreibung von Variabilität auch auf Skalen unterhalb der Lichtlaufzeit durch das modellierte Raumgebiet möglich ist. Zudem wurde ein Szenario quantifiziert, dass im leptonischen Fall unkorrelierte Ausbrüche vorhersagt.
\thispagestyle{empty}
Durch eine Erweiterung des Emissionsgebiets gegenüber anderen Blazar-Modellen um zwei Größenordnung konnte zudem eine Verknüpfung zwischen dem Hochenergie- und dem Radiobereich erfolgen. Die gefundene Morphologie des Einschlussgebiets der nichtthermischen Teilchenpopulation beinhaltet eine physikalisch sinnvolle Randbedingung für das Emissionsgebiet der Hochenergiestrahlung, die zudem den für die betrachtete Quelle korrekten Spektralindex im Radiobereich erzeugt.
Darüber hinaus wurden in das Modell sowohl leptonische als auch hadronische Prozesse integriert, die eine flexible und unvoreingenommene Modellierung potentieller Hybridquellen erlauben.
Mit dem entwickelten Modell ist es möglich, aus detailliert vermessenen Lichtkurven im Hochenergiebereich die zu erwartende Radioemission vorherzusagen. Die in diese Vorhersage eingehenden Parameter lassen sich aus der Modellierung des Gleichgewichtsspektrums bestimmen.
Active galactic nuclei (AGN) are among the brightest and most frequent sources on the extragalactic X-ray and gamma-ray sky. Their central supermassive blackhole generates an enormous luminostiy through accretion of the surrounding gas. A few AGN harbor highly collimated, powerful jets in which are observed across the entire electromagnetic spectrum. If their jet axis is seen in a small angle to our line-of-sight (these objects are then called blazars) jet emission can outshine any other emission component from the system. Synchrotron emission from electrons and positrons clearly prove the existence of a relativistic leptonic component in the jet plasma. But until today, it is still an open question whether heavier particles, especially protons, are accelerated as well. If this is the case, AGN would be prime candidates for extragalactic PeV neutrino sources that are observed on Earth. Characteristic signatures for protons can be hidden in the variable high-energy emission of these objects. In this thesis I investigated the broadband emission, particularly the high-energy X-ray and gamma-ray emission of jetted AGN to address open questions regarding the particle acceleration and particle content of AGN jets, or the evolutionary state of the AGN itself. For this purpose I analyzed various multiwavelength observations from optical to gamma-rays over a period of time using a combination of state-of-the-art spectroscopy and timing analysis. By nature, AGN are highly variable. Time-resolved spectral analysis provided a new dynamic view of these sources which helped to determine distinct emission processes that are difficult to disentangle from spectral or timing methods alone.
Firstly, this thesis tackles the problem of source classification in order to facilitate the search for interesting sources in large data archives and characterize new transient sources. I use spectral and timing analysis methods and supervised machine learning algorithms to design an automated source classification pipeline. The test and training sample were based on the third XMM-Newton point source catalog (3XMM-DR6). The set of input features for the machine learning algorithm was derived from an automated spectral modeling of all sources in the 3XMM-DR6, summing up to 137200 individual detections. The spectral features were complemented by results of a basic timing analysis as well as multiwavelength information provided by catalog cross-matches. The training of the algorithm and application to a test sample showed that the definition of the training sample was crucial: Despite oversampling minority source types with synthetic data to balance out the training sample, the algorithm preferably predicted majority source types for unclassified objects. In general, the training process showed that the combination of spectral, timing and multiwavelength features performed best with the lowest misclassification rate of \\sim2.4\\%.
The methods of time-resolved spectroscopy was then used in two studies to investigate the properties of two individual AGN, Mrk 421 and PKS 2004-447, in detail. Both objects belong to the class of gamma-ray emitting AGN. A very elusive sub-class are gamma-ray emitting Narrow Line Seyfert 1 (gNLS1) galaxies. These sources have been discovered as gamma-ray sources only recently in 2010 and a connection to young radio galaxies especially compact steep spectrum (CSS) radio sources has been proposed. The only gNLS1 on the Southern Hemisphere so far is PKS2004-447 which lies at the lower end of the luminosity distribution of gNLS1. The source is part of the TANAMI VLBI program and is regularly monitored at radio frequencies. In this thesis, I presented and analyzed data from a dedicated multiwavelength campaign of PKS 2004-447 which I and my collaborators performed during 2012 and which was complemented by individual observations between 2013 and 2016. I focussed on the detailed analysis of the X-ray emission and a first analysis of its broadband spectrum from radio to gamma-rays. Thanks to the dynamic SED I could show that earlier studies misinterpreted the optical spectrum of the source which had led to an underestimation of the high-energy emission and had ignited a discussion on the source class. I show that the overall spectral properties are consistent with dominating jet emission comprised of synchrotron radiation and inverse Compton scattering from accelerated leptons. The broadband emission is very similar to typical examples of a certain type of blazars (flat-spectrum radio quasars) and does not present any unusual properties in comparison. Interestingly, the VLBI data showed a compact jet structure and a steep radio spectrum consistent with a compact steep spectrum source. This classified PKS 2004-447 as a young radio galaxy, in which the jet is still developing.
The investigation of Mrk 421 introduced the blazar monitoring program which I and collaborator have started in 2014. By observing a blazar simultaneously from optical, X-ray and gamma-ray bands during a VHE outbursts, the program aims at providing extraordinary data sets to allow for the generation of a series of dynamical SEDs of high spectral and temporal resolution. The program makes use of the dense VHE monitoring by the FACT telescope. So far, there are three sources in our sample that we have been monitoring since 2014. I presented the data and the first analysis of one of the brightest and most variable blazar, Mrk 421, which had a moderate outbreak in 2015 and triggered our program for the first time. With spectral timing analysis, I confirmed a tight correlation between the X-ray and TeV energy bands, which indicated that these jet emission components are causally connected. I discovered that the variations of the optical band were both correlated and anti-correlated with the high-energy emission, which suggested an independent emission component. Furthermore, the dynamic SEDs showed two different flaring behaviors, which differed in the presence or lack of a peak shift of the low-energy emission hump. These results further supported the hypothesis that more than one emission region contributed to the broadband emission of Mrk 421 during the observations.
Overall,the studies presented in this thesis demonstrated that time-resolved spectroscopy is a powerful tool to classify both source types and emission processes of astronomical objects, especially relativistic jets in AGN, and thus provide a deeper understanding and new insights of their physics and properties.
The most energetic versions of active galactic nuclei (AGNs) feature two highly-relativistic plasma outflows, so-called jets, that are created in the vicinity of the central supermassive black hole and evolve in opposite directions. In blazars, which dominate the extragalactic gamma-ray sky, the jets are aligned close to the observer's line of sight leading to strong relativistic beaming effects of the jet emission. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-parsec scales, close to their formation region.
In this thesis, I focus on the properties of three AGNs, IC 310, PKS 2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. In these kinds of AGNs, the jets are less strongly aligned with respect to the observer than in blazars. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large samples in the monitoring programmes MOJAVE and TANAMI. My analysis of radio interferometric observations and flux density monitoring data reveal very different characteristics of the jet emission in these sources. The work presented in this thesis illustrates the diversity of the radio properties of gamma-ray-loud AGNs that do not belong to the dominating class of blazars.
Bis heute ist nicht bekannt, in welcher Umgebung die schwersten Elemente durch Neutroneneinfangprozesse entstehen. Es gibt zwei mögliche Szenarien, die in der Literatur diskutiert werden: Supernova-Explosionen und Neutronensternverschmelzungen. Beide tragen zur Elementproduktion bei. Welches Szenario aber die dominierende Umgebung ist, bleibt umstritten. Mehrere Fakten sprechen für Supernova-Explosionen als Entstehungsorte: Wenn ein massereicher Stern kollabiert und anschließend explodiert, sind die Temperatur und die Dichte so hoch, dass Neutronen von den bereits bestehenden Elementen eingefangen und angelagert werden können. Obwohl in Simulationen mit kugelsymmetrischen Modellen nur protonen- reiche Auswürfe entstehen, kann es in asymmetrischen Explosionen aufgrund der Rotation und der Magnetfelder vermutlich zu einem neutronenreichen Auswurf kommen. Dieser ist hoch genug, dass der schnelle Neutroneneinfang auftreten kann. In dieser Arbeit habe ich daher die Überreste solcher Explosionen untersucht, um nach Asymmetrien und ihren möglichen Auswirkungen auf die Element-Entstehung und Verteilung zu suchen. Dafür wurden die beiden Supernova-Überreste CTB 109 und RCW 103 ausgewählt. CTB 109 besitzt im Zentrum einen anomale Röntgenpulsar, also einen Neutronenstern mit hohem Magnetfeld und starker Rotation, die durch Asymmetrien hervorgerufen worden sein könnten. Auch RCW 103 hat vermutlich einen solchen Pulsar als zentrale Quelle. Beide Überreste sind noch recht jung und befinden sich in ihrer Sedov-Taylor Phase. Die Distanz zur Erde beträgt für beide Überreste ungefähr 3 kpc, womit sie in der näheren Umgebung der Erde zu finden sind. Die Elemente bis zur Eisengruppe haben ihre bekanntesten Linien im Bereich der Röntgenstrahlung. Deswegen wurden für diese Arbeit archivierte Daten des Satelliten XMM-Newton ausgewählt und die Spektren in definierten Regionen in den bei- den Supernova-Überresten mit den EPIC MOS-Kameras ausgewertet. Die heutigen Röntgensatelliten haben jedoch keine ausreichende Sensitivität, um die schwersten Elemente zu detektieren. In den Spektren der beiden Überreste wurden deshalb vorwiegend die Elemente Silizium und Magnesium gefunden, in CTB 109 auch Neon. Elemente mit höheren Massezahlen konnten leider nicht signifikant aus dem Hintergrund herausgefiltert werden. Deutlich sind die Peaks der drei Elementen sichtbar, aber auch Schwefel ist in den Regionen mit hohen Zählraten zu entdecken. Für bei- de Supernova-Überreste wurde der beste Fit mit dem Modell vpshock gefunden. In diesem Modell wird ein Plasma angenommen, das bei konstanter Temperatur plan-parallel geschockt wird. Um diesen Fit zu erzielen wurden die Parameter für die Elemente Fe, S, Si, Mg, O und Ne variiert. Die restlichen Elemente wurden auf die solare Häufigkeit festgelegt. Bei CTB 109 befinden sich die Temperaturen (kT) in den Regionen mit hohen Zählraten im Bereich zwischen 0.6 und 0.7 keV und liegen damit im selben Bereich, der bereits mit anderen Teleskopen für CTB 109 gefunden wurde. In den Regionen mit niedrigen Zählraten liegen die Temperaturen etwas tiefer mit 0.3-0.4 keV. Im Supernova-Überrest RCW 103 wurde nur eine Region mit hoher Zählrate analysiert und eine Temperatur von 0.57 keV gefunden, während in der Region mit niedriger Zählrate die Temperatur kT = 0.36 ± 0.08 keV beträgt. Beide Werte passen zu den Werten in CTB 109. Die einzelnen Elementlinien wurden zusätzlich mit einer Gauß-Verteilung angepasst und die Flüsse ermittelt. Diese wurden in Intensitätskarten aufgetragen, in denen die unterschiedlichen Verteilungen der Elemente über den Supernova-Überrest zu sehen sind. Während Silizium in einigen wenigen Regionen geklumpt auftritt, ist Magnesium über die Überreste verteilt und hat in einigen Regionen höhere Werte als Silizium. Das lässt den Schluss zu, dass die beiden Elemente auf unterschiedliche Weise aus der Explosion herausgeschleudert wurden. Die Verteilung ist hier durchaus asymmetrisch, es ist jedoch nicht möglich dies auf eine asymmetrische Explosion der Supernova zurückzuführen. Dafür müssen mehr als zwei Supernova-Überreste mit dieser Methode untersucht werden und mit einer noch nicht vorhandenen Theorie zur Verteilung der Elemente in Überresten verglichen werden. Im direkten Vergleich der beiden bisher untersuchten Supernova-Überreste CTB 109 und RCW 103 sieht man, dass die beiden Überreste sich sehr in der Temperatur und der Verteilung der Elemente ähneln. Das lässt auf eine einheitliche Ausbreitung der Elemente innerhalb der Supernova-Überreste schließen. Silizium wird aufgrund der Explosion in fingerartigen Strukturen, die Rayleigh-Taylor-Instabilitäten, nach außen transportiert. Dabei bildet es Klumpen, die mit den weiter außen liegenden Schalen reagieren. Magnesium und Neon hingegen werden hauptsächlich in den Brennphasen vor der Explosion und in den äußeren Schichten des Sterns, der Zwiebelschalenstruktur, produziert. Dadurch ist eine ausgedehnte Verteilung zu er- warten. Diese Verteilungen der drei Elemente ist in dieser Arbeit bestätigt worden. Während Magnesium und Neon über den gesamten Überrest hohe Flüsse aufweisen, ist Silizium sehr lokal im Lobe von CTB 109 und im hellen Süden von RCW 103 zu finden. Mit zukünftigen Röntgenteleskopen, die eine höhere räumliche Auflösung ermöglichen, könnten die beobachteten Zusammenhänge zwischen der asymmetrischen Elementverteilung im Supernovaüberrest und den Mechanismen der Elemententstehung in der Supernova weiter untersucht werden.
In this thesis, the broad band emission, especially in the gamma-ray and radio band, of the active galaxy IC 310 located in the Perseus cluster of galaxies was investigated. The main experimental methods were Cherenkov astronomy using the MAGIC telescopes and high resolution very
long baseline interferometry (VLBI) at radio frequencies (MOJAVE, EVN). Additionally, data
of the object in different energy bands were studied and a multi-wavelength campaign has been
organized and conducted. During the campaign, an exceptional bright gamma-ray flare at TeV
energies was found with the MAGIC telescopes. The results were compared to theoretical acceleration and emission models for explaining the high energy radiation of active galactic nuclei. Many open questions regarding the particle acceleration to very high energies in the jets of active galactic nuclei, the particle content of the jets, or how the jets are launched, were addressed in this thesis by investigating the variability of IC 310 in the very high energy band.
It is argued that IC310 was originally mis-classified as a head-tail radio galaxy. Instead,
it shows a variability behavior in the radio, X-ray, and gamma-ray band similar to the one
found for blazars. These are active galactic nuclei that are characterized by flux variability in all observed energy bands and at all observed time scales. They are viewed at a small angle between the jet axis and the line-of-sight. Thus, strong relativistic beaming influences the variability properties of blazars. Observations of IC 310 with the European VLBI Network helped to find limits for the angle between the jet axis and the line-of-sight, namely 10 deg - 20 deg. This places IC 310 at the borderline between radio galaxies (larger angles) and blazars (smaller angles).
During the gamma-ray outburst detected at the beginning of the multi-wavelength campaign, flux variability as short as minutes was measured. The spectrum during the flare can be described by a simple power-law function over two orders of magnitude in energy up to ~10 TeV. Compared to previous observations, no significant variability of the spectral shape was found. Together with the constraint on the viewing angle, this challenges the currently accepted models for particle acceleration at shock waves in the jets. Alternative models, such as stars moving through the jets, mini-jets in the jet caused, e.g., by reconnection events, or gap acceleration in a pulsar-like magnetosphere around the black hole were investigated. It was found that only the latter can explain all observational findings, which at least suggests that it could even be worthwhile to reconsider published investigations of AGN with this new knowledge in mind.
The first multi-wavelength campaign was successfully been conducted in 2012/2013, including
ground-based as well as space-based telescopes in the radio, optical, ultraviolet, X-ray, and
gamma-ray energy range. No pronounced variability was found after the TeV flare in any energy band. The X-ray data showed a slightly harder spectrum when the emission was brighter. The long-term radio light curve indicated a flickering flux variability, but no strong hint for a
new jet component was found from VLBI images of the radio jet. In any case, further analysis of the existing multi-wavelength data as well as complimentary measurements could provide further exciting insights, e.g., about the broad band spectral energy distribution.
Overall, it can be stated that IC 310 is a key object for research of active galactic nuclei in
the high-energy band due to its proximity and its peculiar properties regarding flux variability
and spectral behavior. Such objects are ideally suited for studying particle acceleration, jet
formation, and other physical effects and models which are far from being fully understood.
Active Galactic Nuclei (AGNs) are among the most powerful and most intensively studied objects in the Universe. AGNs harbor a mass accreting supermassive black hole (SMBH) in their center and emit radiation throughout the entire electromagnetic spectrum. About 10% show relativistic particle outflows, perpendicular to the so-called accretion disk, which are known as jets. Blazars, a subclass of AGN with jet orientations close to the line-of-sight of the observer, are highly variable sources from radio to TeV energies and dominate the γ- ray sky. The overall observed broadband emission of blazars is characterized by two distinct emission humps. While the low-energy hump is well described by synchrotron radiation of relativistic electrons, both leptonic processes such as inverse Compton scattering and hadronic processes such as pion-photoproduction can explain the radiation measured in the high-energy hump. Neutrinos, neutral, nearly massless particles, which only couple to the weak force 1 are exclusively produced in hadronic interactions of protons accelerated to relativistic energies. The detection of a high-energy neutrino from an AGN would provide an irrefutable proof of hadronic processes happening in jets. Recently, the IceCube neutrino observatory, located at the South Pole with a total instrumented volume of about one km 3 , provided evidence for a diffuse high-energy neutrino flux. Since the atmospheric neutrino spectrum falls steeply with energy, individual events with the clearest signature of coming from an extraterrestrial origin are those at the highest energies. These events are uniformly distributed over the entire sky and are therefore most likely of extragalactic nature. While the neutrino event (known as “BigBird”) with a reconstructed energy of ∼ 2 PeV has already been detected in temporal and spatial agreement with a single blazar in an active phase, still, the chance coincidence for such an association is only on the order of ∼ 5%. The neutrino flux at these high energies is low, so that even the brightest blazars only yield a Poisson probability clearly below unity. Such a small probability is in agreement with the observed all-sky neutrino flux otherwise, the sky would already be populated with numerous confirmed neutrino point sources. In neutrino detectors, events are typically detected in two different signatures 2 . So-called shower-like electron neutrino events produce a large particle cascade, which leads to a pre- cise energy measurement, but causes a large angular uncertainty. Track-like muon neutrino events, however, only produce a single trace in the detector, leading to a precise localization but poor energy reconstruction. The “BigBird” event was a shower-like neutrino event, tem- porally coincident with an activity phase of the blazar PKS 1424−418, lasting several months. Shower-like neutrino events typically lead to an angular resolution of ∼ 10 ◦ , while track-like events show a localization uncertainty of only ∼ 1 ◦ . Considering the potential detection of a track-like neutrino event in agreement with an activity phase of a single blazar lasting only days would significantly decrease the chance coincidence of such an association. In this thesis, a sample of bright blazars, continuously monitored by Fermi/LAT in the MeV to GeV regime, is considered as potential neutrino candidates. I studied the maximum possible neutrino ex- pectation of short-term blazar flares with durations of days to weeks, based on a calorimetric argumentation. I found that the calorimetric neutrino output of most short-term blazar flares is too small to lead to a substantial neutrino detection. However, for the most extreme flares, Poisson probabilities of up to ∼ 2% are reached, so that the possibility of associated neutrino detections in future data unblindings of IceCube and KM3NeT seems reasonable. On 22 September 2017, IceCube detected the first track-like neutrino event (named IceCube- 170922A) coincident with a single blazar in an active phase. From that time on, the BL Lac object TXS 0506+056 was subject of an enormous multiwavelength campaign, revealing an en- hanced flux state at the time of the neutrino arrival throughout several different wavelengths. In this thesis, I first studied the long-term flaring behavior of TXS 0506+056, using more than nine years of Fermi/LAT data. I found that the activity phase in the MeV to GeV regime already started in early 2017, months before the arrival of IceCube-170922A. I performed a calorimetric analysis on a 3-day period around the neutrino arrival time and found no sub- stantial neutrino expectation from such a short time range. By computing the calorimetric neutrino prediction for the entire activity phase of TXS 0506+056 since early 2017, a possible association seems much more likely. However, the post-trial corrected chance coincidence for a long-term association between IceCube-170922A and the blazar TXS 0506+056 is on the level of ∼ 3.5 σ, establishing TXS 0506+056 as the most promising neutrino point source candidate in the scientific community. Another way to explain a high-energy neutrino signal without an observed astronomical counterpart, would be the consideration of blazars at large cosmological distances. These high-redshift blazars are capable of generating the observed high-energy neutrino flux, while their γ-ray emission would be efficiently downscattered by Extragalactic Background Light (EBL), making them almost undetectable to Fermi/LAT. High-redshift blazars are impor- tant targets, as they serve as cosmological probes and represent one of the most powerful classes of γ-ray sources in the Universe. Unfortunately, only a small number of such objects could be detected with Fermi/LAT so far. In this thesis, I perform a systematic search for flaring events in high-redshift γ-ray blazars, which long-term flux is just below the sensitiv- ity limit of Fermi/LAT. By considering a sample of 176 radio detected high-redshift blazars, undetected at γ-ray energies, I was able to increase the number of previously unknown γ-ray blazars by a total of seven sources. Especially the blazar 5BZQ J2219−2719, at a distance of z = 3.63 was found to be the most distant new γ-ray source identified within this thesis. In the final part of this thesis, I studied the flaring behavior of bright blazars, previously considered as potential neutrino candidates. While the occurrence of flaring intervals in blazars is of purely statistical nature, I found potential differences in the observed flaring behavior of different blazar types. Blazars can be subdivided into BL Lac (BLL) objects, Flat-Spectrum Radio Quasar (FSRQ) and Blazars Candidates of Uncertain type (BCU). FSRQs are typ- ically brighter than BL Lac or BCU type blazars, thus longer flares and more complicated substructures can be resolved. Although BL Lacs and BCUs are capable of generating signifi- cant flaring episodes, they are often identified close to the detection threshold of Fermi/LAT. Long-term outburst periods are exclusively observed in FSRQs, while BCUs can still con- tribute with flare durations of up to ten days. BL Lacs, however, are only detected in flaring states of less than four days. FSRQs are bright enough to be detected multiple times with time gaps between two subsequent flaring intervals ranging between days and months. While BL Lacs can show time gaps of more than 100 days, BCUs are only observed with gaps up to 20 days, indicating that these objects are detected only once in the considered time range of six years. The newly introduced parameter “Boxyness” describes the averaged flux in an identified flaring state and does highly depend on the shape of the considered flare. While perfectly box-like flares (flares which show a constant flux level over the entire time range) correspond to an averaged flux which is equal the maximum flare amplitude, irregular shaped flares generate a smaller averaged flux. While all blazar types show perfectly box-shaped daily flares, BL Lacs and BCUs are typically not bright enough to be resolved for multiple days. The work presented in this thesis illustrates the challenging state of multimessenger neu- trino astronomy and the demanding hunt for the first extragalactic neutrino point sources. In this context, this work discusses the multiwavelength emission behavior of blazars as a promising class of neutrino point sources and allows for predictions of current and future source associations
Active galactic nuclei (AGNs) are among the brightest sources in our universe. These galaxies are considered active because their central region is brighter than the luminosities of all stars in a galxies can provide. In their center is a supermassive black hole (SMBH) surrounded by an accretion disk and further out a dusty torus. AGN can be found with emission over the whole electromagnetic spectrum, starting at radio frequencies over optical and X-ray emission up to the $\gamma$-rays. Not all of these sources are detected in each frequency regime. In this work mainly blazars are examined at low radio frequencies. Blazars are a subclass of radio-loud AGN. These radio-loud sources usually exhibit highly collimated jets perpendicular to the accretion disk. For blazars these jets are pointed in the direction of the observer and their emission is highly variable. \\
AGN are classified in different subclasses based on their morphology. These different subclasses are combined in the AGN unification model, which explains the different morphologies by having sources only varying in their luminosities and their angle to the line of sight to the observer. Blazars are these targets, where the jet is pointing towards the observer, while the AGN observed edge on are called radio galaxies. This means that blazars should be the counterparts to radio galaxies seen from a different angle. Testing this is one of the goals in this work. \\
After the discovery of AGN in the 1940s these objects have been studied at all wavelengths. With the development of interferometry with radio telescopes the angular resolution for radio observations could be improved. In the last 20 years many AGN are regularly monitored. One of these monitoring programs is the MOJAVE program, monitoring 274 AGNs with using the Very Long Baseline Interferometry (VLBI) technique. The monitoring provides information on the evolution and structure of AGN and their jets. However, the mechanisms of the jet formation and their collimation are not fully understood. Due to relativistic effects it is difficult to obtain intrinsic instead of apparent parameters of these jets. One approach to get closer to the intrinsic jet power is by observing the regions, in which the jets end and interact with the intergalactic medium. Observations at lower radio frequencies are more sensitive for extended diffuse emission. \\
Since December 2012 a new radio telescope for low frequencies is observing. It is a telescope with stations consisting of dipole antennas. The major part of the array located in the Netherlands (38 stations) with 12 additional international stations in Germany, France, Sweden, Poland and the United Kingdom. This instrument is called the Low Frequency Array (LOFAR). LOFAR offers the possibility to observe at frequencies between 30--250 MHz in combination with angular resolution (below 1 arcsec for the full array), which was not available with previous telescopes. \\
In this work results of blazar studies with LOFAR observations are presented. To take advantage of a large database with multi-wavelength observations and kinematic studies the MOJAVE 1.5 Jy flux limited sample was chosen. Based on the preliminary results of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) the flux densities and spectral indices of blazars of the MOJAVE sample are examined. 125 counterparts of MOJAVE blazars were found in the MSSS catalog. Since the MSSS observations only contain the stations in the Netherlands and observes in snapshots, the angular resolution and the sensitivity is limited. The first MSSS catalog was produced with an angular resolution of $\sim$120 arcsec and a sensitivity of $\sim$50--100 mJy. Another advantage of the MOJAVE sample is the monitoring of these sources with the Owens Valley Radio Observatory (OVRO) at 15 GHz to produce radio lightcurves. With these observations it is possible to get quasi-simultaneous flux densities at 15 GHz for the corresponding MSSS observations. By having quasi-simultaneous observations the variability of the blazars affects the flux densities less than with the use of archival data. The spectral indices obtained by the combination of MSSS and OVRO flux densities can be used to estimate the contribution of the diffuse extended emission for these AGNs. \\
Comparing the MSSS catalog with the OVRO data points, the flux densities have a tendency to be higher at low frequencies. This is expected due to the higher contribution of extended emission. The broadband spectral index distribution shows a peak at $\sim-0.2$. While some sources seem to have steeper spectral indices meaning that extended emission contributes a large fraction of the total flux density, more than the half of the sample shows flat spectral indices. The flat spectral indices show that the total flux densities of these sources are dominated by their relativistic beamed emission regions, which is the same for the observations at GHz frequencies. \\
To obtain more detailed images of these sources the MSSS measurement sets including sources of the sample were reprocessed to improve the angular resolution to $\sim$30 arcsec. The higher angular resolution reveals extended diffuse emission of several blazars. Since the reimaging results were not fully calibrated only the morphology at this resolution could be examined. However, with the short snapshot observations the images obtained with this strategy are affected from artifacts. The reimaging could be successfully performed for 93 sources in one frequency band. For 45 of these sources all availabe frequency bands could be reprocessed and used to created averaged images. These images are presented in this work. As a results of the reimaging process a pilot sample was defined to observe targets with diffuse extended emission using the whole LOFAR array including the international stations. \\
The second part of this work presents the results of a pilot sample consisting of four blazars observed with the LOFAR international array. Since the calibration of this kind of LOFAR observation is still in development, the main focus was the description of the used calibration strategy. The calibration strategies still has some limitation but resulted in images with angular resolutions of less than 1 arcsec. The morphology of all four blazars show features confirming the expectations of their counterpart radio galaxies. With the flux densities of the extended emission found in these brightness distributions the extended radio luminosities are calculated. Comparing these to the radio galaxy classifications also confirm the expectations from the unification model. \\
By extending the sample of observed blazars with LOFAR international in future the calibration strategy can be used to create similar high resolution images. A larger sample can be used to test the unification model with statistical significant results. \\
Hard X-ray Properties of Relativistically Beamed Jets from Radio- and Gamma-Ray-Bright Blazars
(2022)
In this work I characterize the hard X-ray properties of blazars, active galactic nuclei with highly beamed emission, which are notoriously hard to detect in this energy range. I employ pre-defined samples of beamed AGN: the radio-selected MOJAVE and TANAMI samples, as well as the most recent gamma-ray-selected Fermi/LAT 4LAC catalog. The hard X-ray data is extracted from the 105-month all-sky survey maps of the Swift/BAT (Burst Alert Telescope) in the energy band of 20 keV to 100 keV. A great majority of both the MOJAVE and TANAMI samples are significantly detected, with signal-to noise ratios of the sources often just below the X-ray catalog signal thresholds. All blazar sub-types (FSRQs, BL Lacs) and radio galaxies show characteristic ranges of X-ray flux, luminosity, and photon index. Their properties are correlated with the corresponding SED's shape / peak frequency. The LogN-LogS distributions of the samples show a scarcity of blazars in the middle and lower X-ray flux range, indicating differing evolutionary paths between radio and X-ray emission, which is also suggested by the corresponding luminosity functions. Compared to the radio samples, the 4LAC sources are on average significantly less bright in the BAT band since this range often coincides with the spectral gap region between the two big SED emission bumps. Also, the spectral shapes differ notably, especially for the sub-type of BL Lacs. Using the parameter space of X-ray and gamma-ray photon indices, 35 blazar candidate sources can be assigned to either the FSRQ or BL Lac type with high certainty. The reason why many blazars are weak in this energy band can be traced back to a number of factors: the selection bias of the initial sample, differential evolution of the X-rays and the wavelengths in which the sample is defined, and the limited sensitivity of the observing instruments.
Context. In active galaxies, matter is accreted onto super massive black holes (SMBH). This accretion process causes a region roughly the size of our solar system to outshine the entire host galaxy, forming an active galactic nucleus (AGN). In some of these active galaxies, highly relativistic particle jets are formed parallel to the rotation axis of the super massive black hole. A fraction of these sources is observed under a small inclination angle between the pointing direction of the jet and the observing line of sight. These sources are called blazars. Due to the small inclination angle and the highly relativistic speeds of the particles in the jet, beaming effects occur in the radiation of these particles. Blazars can be subdivided into the high luminosity flat spectrum radio quasars (FSRQs) and the low luminosity BL Lacertae objects (BL Lacs). As all AGN, blazars are broadband emitters and therefore observable from the longest wavelengths in the radio regime to the shortest wavelengths in the gamma-ray regime. In this thesis I will analyze blazars at these two extremes with respect to their parsec-scale properties in the radio and their time evolution properties in gamma-ray flux.
Method. In the radio regime the technique of very long baseline interferometry (VLBI) can be used in order to spatially resolve the synchrotron radiation coming from those objects down to sub-parsec scales. This information can be used to observe the time evolution of the structure of such sources. This is done in large monitoring programs such as the MOJAVE (15 GHz) and the Boston University blazar monitoring program (43 GHz). In this thesis I utilize data of 28 sources from these monitoring programs spanning 10 years of observation from 2003 to 2013, resulting in over 1800 observed epochs, to study the brightness temperature and diameter gradients of these jets. I conduct a search for systematic geometry transitions in the radio jets. The synchrotron cooling time in the radio core of the jets is used to determine the magnetic field strength in the radio core. Considering the jet geometry, these magnetic field strengths are scaled to the ergosphere of the SMBH in order to obtain the distance of the radio core to the SMBH.
In the gamma-regime these blazars cannot be spatially resolved. Due to this, it is hard to put strong constrains onto where the gamma-ray emitting region is. Blazars have shown to be variable at high energies on time scales down to minutes. The nature of this variability can be studied in order to put constrains on the particle acceleration mechanism and possibly the region and size of the gamma-ray emitting region. The variability of blazars in the energy range between 0.1 GeV and 1 GeV can for example be observed with the pair-conversion telescope on board the Fermi satellite. I use 10 years of data from the Fermi-LAT (LAT: Large Area Telescope) satellite in order to study the variability of a large sample of blazars (300-800, depending on the used significance filters for data points). I quantify this variability with the Ornstein-Uhlenbeck (OU) parameters and the power spectral density (PSD) slopes. The same procedure is applied to 20 light curves available for the radio sample.
Results. The diameter evolution along the jet axis of the radio sources suggests, that FSRQs feature flatter gradients than BL Lacs. Fitting these gradients, it is revealed that BL Lacs are systematically better described by a simple single power law than FSRQs. I found 9 sources with a strongly constrained geometry transition. The sources are 0219+421, 0336-019, 0415+379, 0528+134, 0836+710, 1101+384, 1156+295, 1253-055 and 2200+420. In all of these sources, the geometry transition regions are further out in the jet than the Bondi sphere. The magnetic field strengths of BL Lacs is systematically larger than that of FSRQs. However the scaling of these fields suggest that the radio cores of BL Lac objects are closer to the SMBHs than the radio cores of FSRQs. Analyzing the variability of Fermi-LAT light curves yields consistent results for all samples. FSRQs show systematically steeper PSD slopes and feature OU parameters more favorable to strong variability than BL Lacs. The Fermi-LAT light curves of the sub-sample of radio jets, suggest an anticorrelation between the jet complexity from the radio observations and the OU-parameters as well as the PSD slopes from the gamma-ray observations.
Conclusion.
The flatter diameter gradients of FSRQs suggest that these sources are more collimated further down the jet than BL Lacs. The systematically better description of the diameter and brightness temperature gradient by a single power law of BL Lacs, suggest that FSRQs are more complex with respect to the diameter evolution along the jet and the surface brightness distribution than BL Lac objects. FSRQs often feature regions where recollimation can occur in distinct knots within the jets. For the sources where a geometry transition could be constrained, the Bondi radius, being systematically smaller than the position of the transition region along the jet axis, suggest that changing pressure gradients are not the sole cause for these systematic geometry transitions. Nevertheless they may be responsible for recollimation regions, found typically downstream the jet, beyond the Bondi radius and the transition zone. The difference in the distance of the radio cores between FSRQs and BL Lacs is most likely due to the combination of differences in SMBH masses and systematically smaller jet powers in BL Lacs. The variability in energy ranges above 100 MeV and above 1 GeV-regime suggest that many light curves of BL Lac objects are more likely to be white noise while the PSD slopes and the OU parameters of FSRQ gamma-ray light curves favor stronger variability on larger time scales with respect to the time binning of the analyzed light curve. Although the anticorrelation of the jet complexity acquired from the radio observations and the PSD slopes and OU parameters from the gamma-observations suggest that more complex sources favor OU parameters and PSD slopes resulting in more variability (not white noise) it is beyond the scope of this thesis to pinpoint whether this correlation results from causation. The question whether a complex jet causes more gamma-ray variability or more gamma-ray variability causes more complex jets cannot be answered at this point. Nevertheless the computed correlation measures suggest that this dependence is most likely not linear and therefore an indication that these effects might even interact.
Verschiedene Konzepte der Röntgenmikroskopie haben sich mittlerweile im Labor etabliert und ermöglichen heute aufschlussreiche Einblicke in eine Vielzahl von Probensystemen. Der „Labormaßstab“ bezieht sich dabei auf Analysemethoden, die in Form von einem eigenständigen Gerät betrieben werden können. Insbesondere sind sie unabhängig von der Strahlerzeugung an einer Synchrotron-Großforschungseinrichtung und einem sonst kilometergroßen Elektronen-speicherring. Viele der technischen Innovationen im Labor sind dabei ein Transfer der am Synchrotron entwickelten Techniken. Andere wiederum basieren auf der konsequenten Weiterentwicklung etablierter Konzepte. Die Auflösung allein ist dabei nicht entscheidend für die spezifische Eignung eines Mikroskopiesystems im Ganzen. Ebenfalls sollte das zur Abbildung eingesetzte Energiespektrum auf das Probensystem abgestimmt sein. Zudem muss eine Tomographieanalage zusätzlich in der Lage sein, die Abbildungsleistung bei 3D-Aufnahmen zu konservieren.
Nach einem Überblick über verschiedene Techniken der Röntgenmikroskopie konzentriert sich die vorliegende Arbeit auf quellbasierte Nano-CT in Projektionsvergrößerung als vielversprechende Technologie zur Materialanalyse. Hier können höhere Photonenenergien als bei konkurrierenden Ansätzen genutzt werden, wie sie von stärker absorbierenden Proben, z. B. mit einem hohen Anteil von Metallen, zur Untersuchung benötigt werden. Das bei einem ansonsten idealen CT-Gerät auflösungs- und leistungsbegrenzende Bauteil ist die verwendete Röntgen-quelle. Durch konstruktive Innovationen sind hier die größten Leistungssprünge zu erwarten. In diesem Zuge wird erörtert, ob die Brillanz ein geeignetes Maß ist, um die Leistungsfähigkeit von Röntgenquellen zu evaluieren, welchen Schwierigkeiten die praktische Messung unterliegt und wie das die Vergleichbarkeit der Werte beeinflusst. Anhand von Monte-Carlo-Simulationen wird gezeigt, wie die Brillanz verschiedener Konstruktionen an Röntgenquellen theoretisch bestimmt und miteinander verglichen werden kann. Dies wird am Beispiel von drei modernen Konzepten von Röntgenquellen demonstriert, welche zur Mikroskopie eingesetzt werden können. Im Weiteren beschäftigt sich diese Arbeit mit den Grenzen der Leistungsfähigkeit von Transmissionsröntgenquellen. Anhand der verzahnten Simulation einer Nanofokus-Röntgenquelle auf Basis von Monte-Carlo und FEM-Methoden wird untersucht, ob etablierte Literatur¬modelle auf die modernen Quell-konstruktionen noch anwendbar sind. Aus den Simulationen wird dann ein neuer Weg abgeleitet, wie die Leistungsgrenzen für Nanofokus-Röntgenquellen bestimmt werden können und welchen Vorteil moderne strukturierte Targets dabei bieten.
Schließlich wird die Konstruktion eines neuen Nano-CT-Gerätes im Labor-maßstab auf Basis der zuvor theoretisch besprochenen Nanofokus-Röntgenquelle und Projektionsvergrößerung gezeigt, sowie auf ihre Leistungsfähigkeit validiert. Es ist spezifisch darauf konzipiert, hochauflösende Messungen an Materialsystemen in 3D zu ermöglichen, welche mit bisherigen Methoden limitiert durch mangelnde Auflösung oder Energie nicht umsetzbar waren. Daher wird die praktische Leistung des Gerätes an realen Proben und Fragestellungen aus der Material¬wissenschaft und Halbleiterprüfung validiert. Speziell die gezeigten Messungen von Fehlern in Mikrochips aus dem Automobilbereich waren in dieser Art zuvor nicht möglich.