### Refine

#### Has Fulltext

- yes (5)

#### Is part of the Bibliography

- yes (5)

#### Document Type

- Doctoral Thesis (4)
- Master Thesis (1)

#### Keywords

- Extremwertstatistik (4)
- Copula (2)
- Pareto-Verteilung (2)
- Stochastischer Prozess (2)
- Anpassungstest (1)
- Archimedean copula (1)
- Asymptotic independence (1)
- Bedingte Unabhängigkeit (1)
- Continuous Sample Path (1)
- Copula <Mathematik> (1)

#### Institute

#### ResearcherID

- C-2593-2016 (1)

Bei vielen Fragestellungen, in denen sich eine Grundgesamtheit in verschiedene Klassen unterteilt, ist weniger die relative Klassengröße als vielmehr die Anzahl der Klassen von Bedeutung. So interessiert sich beispielsweise der Biologe dafür, wie viele Spezien einer Gattung es gibt, der Numismatiker dafür, wie viele Münzen oder Münzprägestätten es in einer Epoche gab, der Informatiker dafür, wie viele unterschiedlichen Einträge es in einer sehr großen Datenbank gibt, der Programmierer dafür, wie viele Fehler eine Software enthält oder der Germanist dafür, wie groß der Wortschatz eines Autors war oder ist. Dieser Artenreichtum ist die einfachste und intuitivste Art und Weise eine Population oder Grundgesamtheit zu charakterisieren. Jedoch kann nur in Kollektiven, in denen die Gesamtanzahl der Bestandteile bekannt und relativ klein ist, die Anzahl der verschiedenen Spezien durch Erfassung aller bestimmt werden. In allen anderen Fällen ist es notwendig die Spezienanzahl durch Schätzungen zu bestimmen.

This cumulative dissertation is organized as follows:
After the introduction, the second chapter, based on “Asymptotic independence of bivariate order statistics” (2017) by Falk and Wisheckel, is an investigation of the asymptotic dependence behavior of the components of bivariate order statistics. We find that the two components of the order statistics become asymptotically independent for certain combinations of (sequences of) indices that are selected, and it turns out that no further assumptions on the dependence of the two components in the underlying sample are necessary. To establish this, an explicit representation of the conditional distribution of bivariate order statistics is derived.
Chapter 3 is from “Conditional tail independence in archimedean copula models” (2019) by Falk, Padoan and Wisheckel and deals with the conditional distribution of an Archimedean copula, conditioned on one of its components. We show that its tails are independent under minor conditions on the generator function, even if the unconditional tails were dependent. The theoretical findings are underlined by a simulation study and can be generalized to Archimax copulas.
“Generalized pareto copulas: A key to multivariate extremes” (2019) by Falk, Padoan and Wisheckel lead to Chapter 4 where we introduce a nonparametric approach to estimate the probability that a random vector exceeds a fixed threshold if it follows a Generalized Pareto copula. To this end, some theory underlying the concept of Generalized Pareto distributions is presented first, the estimation procedure is tested using a simulation and finally applied to a dataset of air pollution parameters in Milan, Italy, from 2002 until 2017.
The fifth chapter collects some additional results on derivatives of D-norms, in particular a condition for the existence of directional derivatives, and multivariate spacings, specifically an explicit formula for the second-to-last bivariate spacing.

Extreme value theory aims at modeling extreme but rare events from a probabilistic point of view. It is well-known that so-called generalized Pareto distributions, which are briefly reviewed in Chapter 1, are the only reasonable probability distributions suited for modeling observations above a high threshold, such as waves exceeding the height of a certain dike, earthquakes having at least a certain intensity, and, after applying a simple transformation, share prices falling below some low threshold. However, there are cases for which a generalized Pareto model might fail. Therefore, Chapter 2 derives certain neighborhoods of a generalized Pareto distribution and provides several statistical tests for these neighborhoods, where the cases of observing finite dimensional data and of observing continuous functions on [0,1] are considered. By using a notation based on so-called D-norms it is shown that these tests consistently link both frameworks, the finite dimensional and the functional one. Since the derivation of the asymptotic distributions of the test statistics requires certain technical restrictions, Chapter 3 analyzes these assumptions in more detail. It provides in particular some examples of distributions that satisfy the null hypothesis and of those that do not. Since continuous copula processes are crucial tools for the functional versions of the proposed tests, it is also discussed whether those copula processes actually exist for a given set of data. Moreover, some practical advice is given how to choose the free parameters incorporated in the test statistics. Finally, a simulation study in Chapter 4 compares the in total three different test statistics with another test found in the literature that has a similar null hypothesis. This thesis ends with a short summary of the results and an outlook to further open questions.

Extreme value theory is concerned with the stochastic modeling of rare and extreme events. While fundamental theories of classical stochastics - such as the laws of small numbers or the central limit theorem - are used to investigate the asymptotic behavior of the sum of random variables, extreme value theory focuses on the maximum or minimum of a set of observations. The limit distribution of the normalized sample maximum among a sequence of independent and identically distributed random variables can be characterized by means of so-called max-stable distributions.
This dissertation concerns with different aspects of the theory of max-stable random vectors and stochastic processes. In particular, the concept of 'differentiability in distribution' of a max-stable process is introduced and investigated. Moreover, 'generalized max-linear models' are introduced in order to interpolate a known max-stable random vector by a max-stable process. Further, the connection between extreme value theory and multivariate records is established. In particular, so-called 'complete' and 'simple' records are introduced as well as it is examined their asymptotic behavior.

This thesis covers a wide range of results for when a random vector is in the max-domain of attraction of max-stable random vector. It states some new theoretical results in D-norm terminology, but also gives an explaination why most approaches to multivariate extremes are equivalent to this specific approach. Then it covers new methods to deal with high-dimensional extremes, ranging from dimension reduction to exploratory methods and explaining why the Huessler-Reiss model is a powerful parametric model in multivariate extremes on par with the multivariate Gaussian distribution in multivariate regular statistics. It also gives new results for estimating and inferring the multivariate extremal dependence structure, strategies for choosing thresholds and compares the behavior of local and global threshold approaches. The methods are demonstrated in an artifical simulation study, but also on German weather data.