Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2016 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- Eindringerkennung (1)
- Evaluation (1)
- Virtuelles Netz (1)
- evaluation (1)
- intrusion detection (1)
- virtualized environments (1)
Institute
Virtualization allows the creation of virtual instances of physical devices, such as network and processing units. In a virtualized system, governed by a hypervisor, resources are shared among virtual machines (VMs). Virtualization has been receiving increasing interest as away to reduce costs through server consolidation and to enhance the flexibility of physical infrastructures. Although virtualization provides many benefits, it introduces new security challenges; that is, the introduction of a hypervisor introduces threats since hypervisors expose new attack surfaces.
Intrusion detection is a common cyber security mechanism whose task is to detect malicious activities in host and/or network environments. This enables timely reaction in order to stop an on-going attack, or to mitigate the impact of a security breach. The wide adoption of virtualization has resulted in the increasingly common practice of deploying conventional intrusion detection systems (IDSs), for example, hardware IDS appliances or common software-based IDSs, in designated VMs as virtual network functions (VNFs). In addition, the research and industrial communities have developed IDSs specifically designed to operate in virtualized environments (i.e., hypervisorbased IDSs), with components both inside the hypervisor and in a designated VM. The latter are becoming increasingly common with the growing proliferation of virtualized data centers and the adoption of the cloud computing paradigm, for which virtualization is as a key enabling technology.
To minimize the risk of security breaches, methods and techniques for evaluating IDSs in an accurate manner are essential. For instance, one may compare different IDSs in terms of their attack detection accuracy in order to identify and deploy the IDS that operates optimally in a given environment, thereby reducing the risks of a security breach. However, methods and techniques for realistic and accurate evaluation of the attack detection accuracy of IDSs in virtualized environments (i.e., IDSs deployed as VNFs or hypervisor-based IDSs) are lacking. That is, workloads that exercise the sensors of an evaluated IDS and contain attacks targeting hypervisors are needed. Attacks targeting hypervisors are of high severity since they may result in, for example, altering the hypervisors’s memory and thus enabling the execution of malicious code with hypervisor privileges. In addition, there are no metrics and measurement methodologies
for accurately quantifying the attack detection accuracy of IDSs in virtualized environments with elastic resource provisioning (i.e., on-demand allocation or deallocation of virtualized hardware resources to VMs). Modern hypervisors allow for hotplugging virtual CPUs and memory on the designated VM where the intrusion detection engine of hypervisor-based IDSs, as well as of IDSs deployed as VNFs, typically operates. Resource hotplugging may have a significant impact on the attack detection accuracy of an evaluated IDS, which is not taken into account by existing metrics for quantifying IDS attack detection accuracy. This may lead to inaccurate measurements, which, in turn, may result in the deployment of misconfigured or ill-performing IDSs, increasing
the risk of security breaches.
This thesis presents contributions that span the standard components of any system
evaluation scenario: workloads, metrics, and measurement methodologies. The scientific contributions of this thesis are:
A comprehensive systematization of the common practices and the state-of-theart on IDS evaluation. This includes: (i) a definition of an IDS evaluation design space allowing to put existing practical and theoretical work into a common context in a systematic manner; (ii) an overview of common practices in IDS evaluation reviewing evaluation approaches and methods related to each part of the design space; (iii) and a set of case studies demonstrating how different IDS evaluation approaches are applied in practice. Given the significant amount of existing practical and theoretical work related to IDS evaluation, the presented systematization is beneficial for improving the general understanding of the topic by providing an overview of the current state of the field. In addition, it is beneficial for identifying and contrasting advantages and disadvantages of different IDS evaluation methods and practices, while also helping to identify specific requirements and best practices for evaluating current and future IDSs.
An in-depth analysis of common vulnerabilities of modern hypervisors as well as a set of attack models capturing the activities of attackers triggering these vulnerabilities. The analysis includes 35 representative vulnerabilities of hypercall handlers (i.e., hypercall vulnerabilities). Hypercalls are software traps from a kernel of a VM to the hypervisor. The hypercall interface of hypervisors, among device drivers and VM exit events, is one of the attack surfaces that hypervisors expose. Triggering a hypercall vulnerability may lead to a crash of the hypervisor or to altering the hypervisor’s memory. We analyze the origins
of the considered hypercall vulnerabilities, demonstrate and analyze possible attacks that trigger them (i.e., hypercall attacks), develop hypercall attack models(i.e., systematized activities of attackers targeting the hypercall interface), and discuss future research directions focusing on approaches for securing hypercall interfaces.
A novel approach for evaluating IDSs enabling the generation of workloads that contain attacks targeting hypervisors, that is, hypercall attacks. We propose an approach for evaluating IDSs using attack injection (i.e., controlled execution of attacks during regular operation of the environment where an IDS under test is deployed). The injection of attacks is performed based on attack models that capture realistic attack scenarios. We use the hypercall attack models developed as part of this thesis for injecting hypercall attacks.
A novel metric and measurement methodology for quantifying the attack detection accuracy of IDSs in virtualized environments that feature elastic resource provisioning. We demonstrate how the elasticity of resource allocations in such environments may impact the IDS attack detection accuracy and show that using existing metrics in such environments may lead to practically challenging and inaccurate measurements. We also demonstrate the practical use of the metric we propose through a set of case studies, where we evaluate common conventional IDSs deployed as VNFs.
In summary, this thesis presents the first systematization of the state-of-the-art on IDS evaluation, considering workloads, metrics and measurement methodologies as integral parts of every IDS evaluation approach. In addition, we are the first to examine the hypercall attack surface of hypervisors in detail and to propose an approach using attack injection for evaluating IDSs in virtualized environments. Finally, this thesis presents the first metric and measurement methodology for quantifying the attack detection accuracy of IDSs in virtualized environments that feature elastic resource provisioning.
From a technical perspective, as part of the proposed approach for evaluating IDSsthis thesis presents hInjector, a tool for injecting hypercall attacks. We designed hInjector to enable the rigorous, representative, and practically feasible evaluation of IDSs using attack injection. We demonstrate the application and practical usefulness of hInjector, as well as of the proposed approach, by evaluating a representative hypervisor-based IDS designed to detect hypercall attacks. While we focus on evaluating the capabilities of IDSs to detect hypercall attacks, the proposed IDS evaluation approach can be generalized and applied in a broader context. For example, it may be directly used to also evaluate security mechanisms of hypervisors, such as hypercall access control (AC) mechanisms. It may also be applied to evaluate the capabilities
of IDSs to detect attacks involving operations that are functionally similar to hypercalls,
for example, the input/output control (ioctl) calls that the Kernel-based Virtual Machine (KVM) hypervisor supports. For IDSs in virtualized environments featuring elastic resource provisioning, our approach for injecting hypercall attacks can be applied in combination with the attack detection accuracy metric and measurement methodology we propose. Our approach for injecting hypercall attacks, and our metric and measurement methodology, can also be applied independently beyond the scenarios considered in this thesis. The wide spectrum of security mechanisms in virtualized environments whose evaluation can directly benefit from the contributions of this thesis (e.g., hypervisor-based IDSs, IDSs deployed as VNFs, and AC mechanisms) reflects the practical implication of the thesis.