### Refine

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- yes (4)

#### Document Type

- Doctoral Thesis (4)

#### Language

- English (4)

#### Keywords

- Belyi map (2)
- Galois-Theorie (2)
- Hurwitz-Raum (2)
- Monodromie (2)
- Überlagerung <Mathematik> (2)
- Algebraic Curves (1)
- Algebraische Kurve (1)
- Belyi-Funktionen (1)
- Explicit Computation (1)
- Explizite Berechnung (1)

#### Institute

This dissertation is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.
Coprimeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transfered to criteria for non-catastrophicity of convolutional codes.
We calculate the probability that specially structured polynomial matrices are right prime. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional codes is non-catastrophic.
Moreover, the corresponding probabilities are calculated for other networks of linear systems and convolutional codes, such as series connection.
Furthermore, the probabilities that a convolutional codes is MDP and that a clock code is MDS are approximated.
Finally, we consider the probability of finding a solution for a linear network coding problem.

In attempting to solve the regular inverse Galois problem for arbitrary subfields K of C (particularly for K=Q), a very important result by Fried and Völklein reduces the existence of regular Galois extensions F|K(t) with Galois group G to the existence of K-rational points on components of certain moduli spaces for families of covers of the projective line, known as Hurwitz spaces.
In some cases, the existence of rational points on Hurwitz spaces has been proven by theoretical criteria. In general, however, the question whether a given Hurwitz space has any rational point remains a very difficult problem. In concrete cases, it may be tackled by an explicit computation of a Hurwitz space and the corresponding family of covers.
The aim of this work is to collect and expand on the various techniques that may be used to solve such computational problems and apply them to tackle several families of Galois theoretic interest. In particular, in Chapter 5, we compute explicit curve equations for Hurwitz spaces for certain families of \(M_{24}\) and \(M_{23}\).
These are (to my knowledge) the first examples of explicitly computed Hurwitz spaces of such high genus. They might be used to realize \(M_{23}\) as a regular Galois group over Q if one manages to find suitable points on them.
Apart from the calculation of explicit algebraic equations, we produce complex approximations for polynomials with genus zero ramification of several different ramification types in \(M_{24}\) and \(M_{23}\). These may be used as starting points for similar computations.
The main motivation for these computations is the fact that \(M_{23}\) is currently the only remaining sporadic group that is not known to occur as a Galois group over Q.
We also compute the first explicit polynomials with Galois groups \(G=P\Gamma L_3(4), PGL_3(4), PSL_3(4)\) and \(PSL_5(2)\) over Q(t).
Special attention will be given to reality questions. As an application we compute the first examples of totally real polynomials with Galois groups \(PGL_2(11)\) and \(PSL_3(3)\) over Q.
As a suggestion for further research, we describe an explicit algorithmic version of "Algebraic Patching", following the theory described e.g. by M. Jarden. This could be used to conquer some problems regarding families of covers of genus g>0.
Finally, we present explicit Magma implementations for several of the most important algorithms involved in our computations.

We present a technique for computing multi-branch-point covers with prescribed ramification and demonstrate the applicability of our method in relatively large degrees by computing several families of polynomials with symplectic and linear Galois groups.
As a first application, we present polynomials over \(\mathbb{Q}(\alpha,t)\) for the primitive rank-3 groups \(PSp_4(3)\) and \(PSp_4(3).C_2\) of degree 27 and for the 2-transitive group \(PSp_6(2)\) in its actions on 28 and 36 points, respectively. Moreover, the degree-28 polynomial for \(PSp_6(2)\) admits infinitely many totally real specializations.
Next, we present the first (to the best of our knowledge) explicit polynomials for the 2-transitive linear groups \(PSL_4(3)\) and \(PGL_4(3)\) of degree 40, and the imprimitive group \(Aut(PGL_4(3))\) of degree 80.
Additionally, we negatively answer a question by König whether there exists a degree-63 rational function with rational coefficients and monodromy group \(PSL_6(2)\) ramified over at least four points. This is achieved due to the explicit computation of the corresponding hyperelliptic genus-3 Hurwitz curve parameterizing this family, followed by a search for rational points on it. As a byproduct of our calculations we obtain the first explicit \(Aut(PSL_6(2))\)-realizations over \(\mathbb{Q}(t)\).
At last, we present a technique by Elkies for bounding the transitivity degree of Galois groups. This provides an alternative way to verify the Galois groups from the previous chapters and also yields a proof that the monodromy group of a degree-276 cover computed by Monien is isomorphic to the sporadic 2-transitive Conway group \(Co_3\).

We compute genus-0 Belyi maps with prescribed monodromy and strictly verify the computed results. Among the computed examples are almost simple primitive groups that satisfy the rational rigidity criterion yielding polynomials with prescribed Galois groups over Q(t). We also give an explicit version of a theorem of Magaard, which lists all sporadic groups occurring as composition factors of monodromy groups of rational functions.