Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Year of publication
- 2014 (2)
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Keywords
- Massenspektrometrie (2)
- AL amyloidosis (1)
- AL-Amyloidose (1)
- Amyloidose (1)
- Elektronensprayionisations-Massenspektrometrie (1)
- Glykane <N-> (1)
- MALDI-MS (1)
- Mass spectrometry (1)
- Multiple Myeloma (1)
- Multiples Myelom (1)
Institute
LC-ESI und MALDI-Massenspektrometrische Analyse nativer und derivatisierter Zucker und Glykane
(2014)
Glykane sind weitverbreitete Biomoleküle, die meist in Form von Glykokonjugaten, wie beispielsweise als Glykoproteine oder Glykolipide, vorliegen. Durch die Interaktion von Glykanen mit Glykan-bindenden Proteinen wird eine Vielzahl an biochemischen Prozessen ausgelöst, sowohl physiologischer, als auch pathologischer Art. Die Aufklärung der beteiligten Glykanstrukturen ist daher nicht nur wichtig für das Verständnis dieser Prozesse, sondern kann auch Hinweise auf verschiedene Erkrankungen geben.
Die Identifizierung von Glykanstrukturen kann über verschiedene Wege erfolgen. In der instrumentellen Analytik spielt dabei vor allem die ESI- und MALDI Massenspektrometrie eine wichtige Rolle, da diese sowohl für Detektion, als auch Fragmentierung großer Biomoleküle geeignet sind. Um die Analyse von Zuckern mittels chromatographischer und massenspektrometrischer Methoden zu erleichtern, werden häufig Derivatisierungsreagenzien eingesetzt. Diese verringern die Polarität der Zucker und erleichtern die Detektion durch das Einbringen von Chromo- oder Fluorophoren. Zur Derivatisierung am reduzierenden Terminus von Glykanen und Zuckern eignen sich vor allem Aminierungsreagenzien oder Hydrazide. Hydrazide haben gegenüber anderen Derivatisierungsreagenzien den Vorteil einer einfachen, salzfreien Umsetzung, aus der ein stabiles Derivat mit geschlossenem terminalen Zuckerring hervorgeht.
Für die vorliegende Arbeit wurde die Derivatisierung mit den neuen Hydrazid Reagenzien INH und BINH, sowie dem bereits von Dr. P. Kapková bearbeiteten BACH untersucht. Als Vergleich dienten die underivatisierten Kohlenhydrate, wie auch das standardmäßig eingesetzte Aminierungsreagenz 2-AB. Dabei sollte das Ver-halten verschiedener Zucker und Glykane in Bezug auf chromatographische Trennung, Signalintensität und Fragmentierung analysiert werden.
Zunächst wurde die Umsetzung von Mono-, Di- und Trisacchariden mit den neuen Derivatisierungsreagenzien INH und BINH optimiert. Dadurch konnte bei beiden Substanzen die komplette Umsetzung der Zucker in ihre Derivate gewährleistet werden. Auch die Derivatisierung mit Hilfe der Mikrowelle konnte bei INH erfolgreich durchgeführt werden. Auf diese Weise ließ sich die Reaktionszeit, im Vergleich zu den im Thermo-mixer® benötigten 90 Minuten, auf 20 Minuten verkürzen. Aufgrund der großen Men-gen an Zucker und Derivatisierungsreagenz, die für die Umsetzung in der Mikrowelle nötig sind, war der Versuch jedoch nur für INH geeignet.
Im nächsten Schritt wurde das Trennverhalten der verschiedenen Mono-, Di- und Tri-saccharid-Derivate auf RP-C18- und HILIC-Phasen untersucht. Bei den Monosaccha-riden konnte durch keines der Derivate eine vollständige Trennung auf einer der Pha-sen erreicht werden. Das beste Ergebnis wurde durch INH auf der HILIC-Säule erzielt, doch auch dort konnten die Epimere Glucose, Mannose und Galactose nicht vollstän-dig separiert werden. Die Trennung der Disaccharide Maltose, Cellobiose und Lactose konnte auf der HILIC-Phase mit allen Derivaten außer BACH erfolgreich durchgeführt werden, auf der RP-C18 erwies sich dagegen nur 2-AB als geeignet. Bei den Trisac-chariden 3'SLN und 6'SLN konnten sowohl underivatisierte Zucker, als auch sämtliche Derivate mittels HILIC getrennt werden. Auch auf der C18-Phase war eine Trennung der BINH, BACH und 2-AB-Derivate möglich. Des Weiteren konnte durch die Derivati-sierungen die Signalintensität gegenüber den underivatisierten Zuckern deutlich gesteigert werden.
Nach ihrer Trennung lassen sich massegleiche Di- und Trisaccharide anhand des Fragmentierungsmusters unterscheiden. Während bei den underivatisierten Disaccha-riden Maltose, Cellobiose und Lactose die charakteristischen Fragmente nur schwach sichtbar waren, konnte mit Hilfe der Hydrazide INH, BINH und BACH die Differenzie-rung deutlich erleichtert werden. Die 2-AB-Derivatisierung zeigte dagegen keine Ver-besserung der Fragmentierungseigenschaften. Bei der Unterscheidung der Trisaccharide 3’SLN und 6’SLN waren ebenfalls sowohl underivatisierte, als auch Hydrazid-derivatisierte Zucker im Vorteil gegenüber den 2-AB-Derivaten.
Die Derivatisierung der N-Glykane von Ribonuclease B und Ovalbumin führte bei der Analyse mittels MALDI-TOF zu einer deutlichen Steigerung der Sensitivität. Beispiels-weise ließen sich bei den Glykanen des Ovalbumins durch die Derivatisierungen drei zusätzliche Strukturen im Vergleich zu den nativen Glykanen detektieren. Auch das Fragmentierungsverhalten der Glykane am MALDI-TOF/TOF konnte mit Hilfe der Derivatisierungen erheblich verbessert werden. Besonders die Umsetzung mit BINH führte zu einer Vielzahl charakteristischer Ringfragmente, wodurch die Aufklärung der verschiedenen Glykanstrukturen deutlich vereinfacht wurde. Auch im Vergleich zu 2 AB zeigten die Hydrazid-Derivate sowohl bessere Fragmentierungseigenschaften, als auch eine einfachere Handhabung für die Messung mittels MALDI-MS.
Eine weitere Möglichkeit zur Identifikation von Glykanstrukturen liegt in der spezifischen Bindung durch Lektine. Diese Untersuchung gibt des Weiteren auch einen Hinweis auf funktionelle Eigenschaften der Glykane. Dafür wird die hohe Affinität von Biotin-haltigen Derivatisierungsreagenzien zu Avidin und Streptavidin genutzt. Nach der auf diese Weise erfolgten Immobilisierung der Glykane können diese mittels spezifischer Lektine nachgewiesen werden. Die Eignung des neuen Derivatisierungsreagen-zes BINH für diese Zwecke wurde anhand eines Glykan-Arrays getestet. Dadurch ließ sich bestätigen, dass BINH-derivatisierte Glykane und Zucker sowohl in der Lage sind an Streptavidin zu binden, als auch durch Lektine nachgewiesen werden können. Daher kann davon ausgegangen werden, dass BINH grundsätzlich für den Einsatz in bio-chemischen Methoden geeignet ist.
Zusammenfassend lässt sich sagen, dass die Derivatisierung von Kohlenhydraten mit INH, BINH und BACH zu einer deutlichen Verbesserung der Trenn- und Fragmentierungseigenschaften führten. Dadurch konnten Identifizierung und Strukturanalyse sowohl von kleinen Zuckern, als auch von Glykanen erleichtert werden. Im Vergleich zu dem Standard-Derivatisierungsreagenz 2-AB zeigten die Hydrazide nicht nur im Bereich der Fragmentierungen, sondern auch durch die einfachere Derivatisierungsreaktion wesentliche Vorteile.
In dieser Arbeit wurden die freien Antikörperleichtketten von Patienten mit Multiplen Myelom bzw. mit Multiplen Myelom und AL-Amyloidose auf das Auftreten von posttranslationalen Modifikationen mit der Hilfe von MS/MS-Spektren analysiert. Beide Patientengruppen zeichnen sich durch eine Überproduktion von monoklonalen Antikörperleichtketten aus, wobei diese bei Multiplen-Myelom-Patienten löslich und bei den AL-Amyloidose-Patienten unlöslich vorliegen. Zur Vorbereitung der massenspektrometrischen Messungen wurden die FLCs aus den Knochenmarksüberständen der Patienten isoliert. Dafür wurde eine 2-Schritt-Aufarbeitungsmethode etabliert, bei der mit Hilfe einer Affinitätschromatographie und einer präparativen SDS-PAGE die FLCs aus einer komplexen Matrix isoliert werden konnten. Mit Hilfe der MS/MS-Messungen konnten Sulfonierungen, Methylierungen, Acetylierungen, Oxidierungen und eine O-Glykosylierung identifiziert werden.
In einem weiteren Schritt wurden mittels Varianzanalyse Sequenzen von AL-Amyloidose- und Multiplen-Myelom-Patienten sowie von Kontrollprobanten hinsichtlich der Verteilung der Aminosäuren statistisch analysiert. Dabei konnten mehrere Stellen im FLC-Peptid identifiziert werden, an denen bestimmte Aminosäuren in Abhängigkeit der Subgruppe signifikant unterschiedlich vorkommen.