Refine
Has Fulltext
- yes (17)
Is part of the Bibliography
- yes (17)
Document Type
- Doctoral Thesis (17)
Keywords
- Computertomografie (4)
- Kernspintomografie (3)
- Röntgenmikroskopie (3)
- Bildgebendes Verfahren (2)
- CT (2)
- Computertomographie (2)
- Dreidimensionale Rekonstruktion (2)
- Magnetpartikelbildgebung (2)
- Nanometerbereich (2)
- Pflanzen (2)
Institute
Magnetic Particle Imaging (MPI) ist ein neuartiges tomographisches Bildgebungsverfahren,
welches in der Lage ist, dreidimensional die Verteilung von superparamagnetischen
Nanopartikeln zu detektieren. Aufgrund des direkten Nachweises
des Tracers ist MPI ein sehr schnelles und sensitives Verfahren [12] und benötigt für
eine Einordnung des Tracers (z.B. im Gewebe) eine weitere bildgebende Modalität
wie die Magnetresonanztomographie (MRI) oder die Computertomographie. Die
strukturelle Einordnung wird häufig mit dem Fusion-Imaging-Verfahren durchgeführt,
bei dem die Proben separat in den Geräten vermessen und die Datensätze
retrospektiv korreliert werden [75][76]. In einem ersten Experiment wurde bereits
ein Traveling-Wave-MPI-Scanner (TWMPI) [17] mit einem Niederfeld-MRI-Scanner
kombiniert und die ersten Hybridmessung durchgeführt [15]. Der technische Aufwand,
zwei separate Geräte aufzubauen sowie die Tatsache, dass ein MRI-Gerät
bei 30mT sehr lange benötigt, diente als Motivation für ein integriertes TWMPIMRI-
Hybridsystem, bei dem das dynamische lineare Gradientenarray (dLGA) eines
TWMPI-Scanners intrinsisch das B0-Feld für ein MRI-Gerät erzeugen sollte.
Das Ziel dieser Arbeit war es, die Grundlagen für einen integrierten TWMPI-MRIHybridscanner
zu schaffen. Die Geometrie des dLGAs sollte dabei nicht verändert
werden, damit TWMPI-Messungen weiterhin ohne Einschränkungen möglich sind.
Zusammenfassend werden hier noch mal die wichtigsten Schritte und Ergebnisse
dieser Arbeit aufgezeigt.
Zu Beginn dieser Arbeit wurde mittels Magnetfeldsimulationen nach einer geeigneten
Stromverteilung gesucht, um allein mit dem dLGA ein ausreichend homogenes
Magnetfeld erzeugen zu können. Die Ergebnisse der Simulationen zeigten,
dass bereits zwei unterschiedliche Ströme in 14 der 20 Einzelspulen des dLGAs
genügten, um ein Field of View (FOV) mit der Größe 36mm x 12mm mit ausreichender
Homogenität zu erreichen. Die Homogenität innerhalb des FOVs betrug
dabei 3000 ppm. Für die angestrebte Feldstärke von 235mT waren Stromstärken
von 129A und 124A nötig.
Die hohen Ströme des dLGAs erforderten die Entwicklung eines dafür angepassten
Verstärkers. Das ursprüngliche Konzept, welches auf einem linear angesteuerten
Leistungstransistors aufbaute, wurde in zahlreichen Schritten so weit verbessert,
dass die nötigen Stromstärken stabil an- und ausgeschaltet werden konnten.
Mithilfe eines Ganzkörper-MRIs konnte erstmals das B0-Feld des dLGAs, welches
durch den selbstgebauten Verstärker erzeugt wurde, gemessen und mit der Simulation
verglichen werden. Zwischen den beiden Verläufen zeigte sich eine qualitativ
gute Übereinstimmung.
Das Finden des NMR-Signals stellte wegen des selbstgebauten Verstärkers eine
Herausforderung dar, da zu diesem Zeitpunkt die nötige Präzision noch nicht erreicht
wurde und der wichtigste Parameter, die Magnetfeldstärke im dLGA, nicht
gemessen werden konnte. Dagegen konnte die Länge der Pulse für die Spin-Echo-
Sequenz sehr gut gemessen werden, jedoch war der optimale Wert noch nicht bekannt.
Durch iterative Messungen wurden die richtigen Einstellungen gefunden,
die nach Änderungen an der Hardware jeweils angepasst wurden.
Die Performanz des Verstärkers konnte anhand wiederholter Messungen des NMRSignals
genauer untersucht werden. Es zeigte sich, dass die Präzision weiter verbessert
werden musste, um reproduzierbare Ergebnisse zu erhalten. Mithilfe des
NMR-Signals konnten auch das B0-Feld ausgemessen werden. Es zeigte eine gute
Übereinstimmung zur Simulation. Mithilfe von vier Segmentspulen des dLGAs
war es möglich einen linearen Gradienten entlang der z-Achse zu erzeugen. Ein
Gradient wurde zusätzlich zum B0-Feld geschaltet und ebenfalls ausgemessen.
Auch dieser Verlauf zeigte eine gute Übereinstimmung zur Simulation.
Mithilfe des Gradienten wurde erfolgreich die Frequenzkodierung und die Phasenkodierung
implementiert, durch die bei beiden Messungen zwei Proben anhand
des Ortes unterschieden werden konnten. Damit war die Entwicklung des MRIScanners
abgeschlossen.
Der Aufbau des TWMPI-Scanners benötigte neben dem Bau des dLGAs die Anfertigung
von Sattelspulen. Für die MPI-Messungen konnte der fehlende Teil der
Sendekette sowie die gesamte Empfangskette von einer früheren Version benutzt
werden. Auch für das MPI wurde die Funktionalität mithilfe einer Punktprobe und
eines Phantoms überprüft, allerdings hier in zwei Dimensionen.
Die Erweiterung zu einem Hybridscanner erforderte weitere Modifikationen gegenüber
einem reinen TWMPI- bzw. MRI-Scanner. Es musste ein Weg gefunden
werden, die Beschaltung des dLGAs für die jeweilige Modalität zügig anzupassen.
Dafür wurde ein Steckbrett gebaut, das es erlaubt, die Verkabelung des dLGAs in
kurzer Zeit zu ändern. Außerdem mussten innerhalb des dLGAs die Sattelspulen
und die Empfangsspule des TWMPIs sowie die Empfangsspule des MRIs untergebracht
werden. Ein modulares System erlaubte die gleichzeitige Anordnung aller
Komponenten innerhalb des dLGAs. Das messbare FOV des MRIs ist der Homogenität
des B0-Feldes angepasst, das FOV des TWMPI ist ausgedehnter.
Zum Ende dieser Arbeit wurde erfolgreich eine Hybridmessung durchgeführt. Das
Phantom bestand aus je zwei Kugeln gefüllt mit Öl und mit einem MPI-Tracer
(Resovist). Mit TWMPI war die räumliche Abbildung der Resovistkugeln möglich,
während mit MRI die der Ölkugeln möglich war. Diese in situ Messung zeigte die
erfolgreiche Umsetzung des Konzeptes für den TWMPI-MRI-Hybridscanner.
Zusammenfassend wurden in dieser Arbeit die Grundlagen für einen TWMPIMRI-
Hybridscanner gelegt. Die größte Schwierigkeit bestand darin, ein ausreichend
homogenes B0-Feld für das MRI zu erzeugen, mit dem man ein gutes NMRSignal
aufnehmen konnte. Mit einer einfachen Stromverteilung, bestehend aus zwei
unterschiedlichen Strömen, konnte ein ausreichend homogenes B0-Feld erzeugt
werden. Durch komplexere Stromverteilungen lässt sich die Homogenität noch verbessern
und somit das FOV vergrößern.
Die MRI-Bildgebung wurde in dieser Arbeit für eine Dimension implementiert und
soll in fortführenden Arbeiten auf 2D und 3D ausgedehnt werden. Letztendlich
soll anhand eines MRI-Bildes die Partikelverteilung des MPI-Tracers in Lebewesen
deren Anatomie zugeordnet werden. In [76][77][78] sind die ersten präklinischen
Anwendungen mit dem TWMPI-Scanner durchgeführt worden. Diese Anwendungen
erlangen eine höhere Aussagekraft durch die zusätzlichen Informationen eines
TWMPI-MRI-Hybridscanners.
In weiteren Arbeiten sollte zusätzlich die Größe des FOVs für das MRI erweitert
werden. Außerdem macht es Sinn, einen elektronischen Schalter zum Umschalten
des dLGAs zwischen MRI und MPI zu realisieren.
Die nächste Version des Hybridscanners könnte beispielsweise ein komplett neu
gestaltetes dLGA enthalten, in dem jede Segmentspule in radialer Richtung einmal
geteilt wird und dadurch in eine innere und eine äußere Spule zerlegt wird. Für
das MRI werden die beiden Spulenteile gegen geschaltet, um ein homogenes Feld
in radialer Richtung zu erhalten. Für das TWMPI werden die Spulenteile gleichgeschaltet,
um einen möglichst starken Feldgradienten zu erreichen.
In dieser Arbeit wurde für die nächste Version eines TWMPI-MRI-Hybridscanners
viel Wissen generiert, das äußerst hilfreich für das neue Design sein wird. Anhand
der Vermessung des B0-Feldes hat sich gezeigt, dass die simulierten Magnetfelder
gut mit den gemessenen Magnetfeldern übereinstimmen. Außerdem wurde viel
gelernt über die Kombination von TWMPI mit MRI.
In der computertomographischen Schnittbildgebung treten Artefakte, also Anteile des Ergebnisses
auf, die nicht Teil des gemessenen Objekts sind und die somit die Auswertbarkeit der Ergebnisse beeinflussen. Viele dieser Artefakte sind auf die Inkonsistenz des Modells der Rekonstruktion zur Messung zurückzuführen. Gerade im Hinblick auf Artefakte durch die Energieabhängigkeit der rekonstruierten Schwächungskoeffizienten und Abweichungen der Geometrieinformation des Rekonstruktionsmodells wird häufig der Weg einer Nachbearbeitung der Messdaten beschritten, um Rekonstruktionsartefakte zu vermeiden. Im Zuge dieser Arbeit wird ein Modell der computertomographischen Aufnahme mit Konzentration auf industrielle und materialwissenschaftliche Systeme erstellt, das nicht genutzt wird um die Messdaten zu verändern, sondern um das Rekonstruktionsmodell der Aufnahmerealität anzupassen.
Zunächst werden iterative Rekonstruktionsverfahren verglichen und ein passender Algorithmus ausgewählt, der die gewünschten Modifikationen des Aufnahmemodells erlaubt. Für diese Modifikationen werden bestehende Methoden erweitert und neue modellbasierte Ansätze entwickelt, die in den Rekonstruktionsablauf integriert werden können.
Im verwendeten Modell werden die Abhängigkeiten der rekonstruierten Werte vom polychromatischen
Röntgenspektrum in das Simulationsmodell des Rekonstruktionsprozesses eingebracht und die Geometrie von Brennfleck und Detektorelementen integriert. Es wird gezeigt, dass sich durch die verwendeten Methoden Artefakte vermeiden lassen, die auf der Energieabhängigkeit der Schwächungskoeffizienten beruhen und die Auflösung des Rekonstruktionsbildes durch Geometrieannahmen gesteigert werden kann. Neben diesen Ansätzen werden auch neue Erweiterungen der Modellierung umgesetzt und getestet. Das zur Modellierung verwendete Röntgenspektrum der Aufnahme wird im Rekonstruktionsprozess angepasst. Damit kann die benötigte Genauigkeit dieses Eingangsparameters gesenkt werden.
Durch die neu geschaffene Möglichkeit zur Rekonstruktion der Kombination von Datensätzen
die mit unterschiedlichen Röntgenspektren aufgenommen wurden wird es möglich neben dem
Schwächungskoeffizienten die Anteile der Comptonabsorption und der photoelektrischen
Absorption getrennt zu bestimmen. Um Abweichungen vom verwendeten Geometriemodell zu berücksichtigen wird eine Methode auf der Basis von Bildkorrelation implementiert und getestet, mit deren Hilfe die angenommene Aufnahmegeometrie automatisch korrigiert wird. Zudem wird in einem neuartigen Ansatz zusätzlich zur detektorinternen Streustrahlung die Objektstreustrahlung während des Rekonstruktionsprozesses deterministisch simuliert und so das Modell der Realität der Messdatenaufnahme angepasst.
Die Umsetzung des daraus zusammengesetzten Rekonstruktionsmodells wird an Simulationsdatensätzen getestet und abschließend auf Messdaten angewandt, die das Potential der Methode aufzeigen.
High-Resolution X-ray Imaging based on a Liquid-Metal-Jet-Source with and without X-ray Optics
(2016)
With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of everincreasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding and quality assurance of microscopic species, in particular as it allows reconstructing three-dimensional data sets of the whole sample’s volumevia computed tomography (CT).
The following thesis describes the conceptualization, design, construction and characterization of a compact laboratory-based X-ray microscope in the hard X-ray regime around 9 keV, corresponding to a wavelength of 0.134 nm. Hereby, the main focus is on the optimization of resolution and contrast at relatively short exposure times. For this, a novel liquid-metal-jet anode source is the basis. Such only recently commercially available X-ray source reaches a higher brightness than other conventional laboratory sources, i.e. the number of emitted photons (X-ray quanta) per area and solid angle is exceptionally high. This is important in order to reach low exposure times. The reason for such high brightness is the usage of the rapidly renewing anode out of liquid metal which enables an effective dissipation of heat, normally limiting the creation of high intensities on a small area.
In order to cover a broad range of different samples, the microscope can be operated in two
modes. In the “micro-CT mode”, small pixels are realized with a crystal-scintillator and an
optical microscope via shadow projection geometry. Therefore, the resolution is limited by the emitted wavelength of the scintillator, as well as the blurring of the screen. However, samples in the millimeter range can be scanned routinely with low exposure times. Additionally, this mode is optimized with respect to in-line phase contrast, where edges of an object are enhanced and thus better visible.
In the second “nano-CT mode”, a higher resolution can be reached via X-ray lenses. However,
their production process is due to the physical properties of the hard X-ray range - namely high absorption and low diffraction - extremely difficult, leading typically to low performances. In combination with a low brightness, this leads to long exposure times and high requirements in terms of stability, which is one of the key problems of laboratory-based X-ray microscopy. With the here-developed setup and the high brightness of its source, structures down to 150 nm are resolved at moderate exposure times (several minutes per image) and nano-CTs can be obtained.
The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied.
For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets.
The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content.
Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds.
Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined.
Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants.
As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. Jäger Jae17, which was performed under my supervision, they find great interest under biologists.
The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously.
This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods.
Röntgencomputertomographie (CT) hat in ihrer industriellen Anwendung ein sehr breites Spektrum möglicher Prüfobjekte. Ziel einer CT-Messung sind dreidimensionale Abbilder der Verteilung des Schwächungskoeffizienten der Objekte mit möglichst großer Genauigkeit. Die Parametrierung eines CT-Systems für ein optimales Messergebnis hängt stark vom zu untersuchenden Objekt ab. Eine Vorhersage der optimalen Parameter muss die physikalischen Wechselwirkungen mit Röntgenstrahlung des Objektes und des CT-Systems berücksichtigen. Die vorliegende Arbeit befasst sich damit, diese Wechselwirkungen zu modellieren und mit der Möglichkeit den Prozess zur Parametrierung anhand von Gütemaßen zu automatisieren. Ziel ist eine simulationsgetriebene, automatische Parameteroptimierungsmethode, welche die Objektabhängigkeit berücksichtigt. Hinsichtlich der Genauigkeit und der Effizienz wird die bestehende Röntgensimulationsmethodik erweitert. Es wird ein Ansatz verfolgt, der es ermöglicht, die Simulation eines CT-Systems auf reale Systeme zu kalibrieren. Darüber hinaus wird ein Modell vorgestellt, welches zur Berechnung der zweiten Ordnung der Streustrahlung im Objekt dient. Wegen des analytischen Ansatzes kann dabei auf eine Monte-Carlo Methode verzichtet werden. Es gibt in der Literatur bisher keine eindeutige Definition für die Güte eines CT-Messergebnisses. Eine solche Definition wird, basierend auf der Informationstheorie von Shannon, entwickelt. Die Verbesserungen der Simulationsmethodik sowie die Anwendung des Gütemaßes zur simulationsgetriebenen Parameteroptimierung werden in Beispielen erfolgreich angewendet beziehungsweise mittels Referenzmethoden validiert.
Das Ziel der Promotion war die Entwicklung eines Flusssensors mit dem Fokus auf Flussmessungen an Pflanzen. Dazu musste zunächst die Hardware in Form eines räumlich zugänglichen Magneten und einer Sende- und Empfangseinheit entworfen werden. Um die MR-Konsole ansteuern zu können, musste eine Software entwickelt werden. Die AC-Methode wurde für Flussmessungen mit niedrigen Geschwindigkeiten angepasst und die entsprechende Theorie dazu erweitert. Mit dieser weiterentwickelten AC-Methode wurde die Flussmessung an Pflanzen demonstriert. Dafür wurden im Rahmen einer Kooperation mit der Arbeitsgruppe „Lipid Motobolism“ der IPK-Gatersleben Flussstudien an Weizenpflanzen durchgeführt. Darüber hinaus wurde in dieser Arbeit eine neue Technik zur Wirbelstromvermeidung bei Permanentmagneten entwickelt, um Problemen mit diesen bei Flussmessungen entgegenzuwirken.
Sensorbau
Es wurde ein zugänglicher, mobiler Magnet mit einer Feldstärke von 0,42 T gebaut. Die Feldhomogenität beträgt 0,5 ppm in 1 cm³. Im Vergleich zu dem am Lehrstuhl der EP5 bestehenden, geschlossenen, mobilen Magnetsystem erreicht das in dieser Arbeit gebaute System ein 40fach homogeneres Magnetfeld. Erzielt wurden diese Verbesserungen durch ein spezielles Design, welches durch Computersimulationen sukzessiv optimiert wurde. Durch angepasste Polschuhe konnte darüber hinaus die Induktion von Wirbelströmen im Mittel um einen Faktor 7 reduziert werden, wodurch phasensensitive Flussmessungen ermöglicht wurden.
Um die Zugänglichkeit zu dem Innenraum der HF-Spulen zu gewährleisten, wurde eine Klappspule weiterentwickelt und als Sende- und Empfangseinheit für den Tomographen gebaut. Ferner wurde ein System gebaut, dass direkt um die Pflanze gewickelt werden kann und sich somit für besonders dünne Pflanzenstängel eignet.
Weiterhin wurden zwei Systeme zur Rauschunterdrückung für die Messungen an Pflanzen entwickelt. Dadurch konnte das Rauschen um einen Faktor 92 gesenkt werden. Dies war notwendig, weil die länglichen Pflanzen durch ihre Ausdehnung über das Gehäuse hinweg ein Rauschen in die Empfangsspule induziert haben. Die beiden Rauschunterdrückungssysteme, die elektrische Schirmung und die Gleichtaktunterdrückung, entfernten das Rauschen dabei gleichermaßen.
Flussmessung
Die im Rahmen der Arbeit erfolgte Weiterentwicklung der AC-Methode [102] erlaubte es erstmals mit der Methode quantitative Flussprofile aufzunehmen. In Folge dessen war es
außerdem möglich Geschwindigkeiten unter 200 µm/s zu messen. Die Vorrausetzung dafür war die Implementierung von trapezförmigen Gradienten, welche kürzere Rampzeiten und eine stärkere Kodierung zulassen. Dadurch sind außerdem Intervalle ohne Gradienten realisierbar, die effizientere Refokussierungspulse und die Aufnahme mehrerer Datenpunkte ermöglichen. Die zu erwartenden und simulierten Flussprofile entsprachen den gemessenen Profilen durch die Verwendung einer neuen Auswertungstechnik.
Die neu entwickelte Erweiterung zur Bildgebung ermöglicht die ortsaufgelöste, spektroskopische Flussmessung und so können die Bereiche von Xylem und Phloem voneinander getrennt werden. Dies wurde durch Messungen einer Schwarzerle gezeigt, bei der die im Abschnitt 5.1 beschriebene Struktur dikotyler Pflanzen aufgelöst werden konnte. Zusätzlich können qualitativ genauere Aussagen über die Flussgeschwindigkeit getroffen werden.
Bei Messungen an Pflanzen konnte mit der optimierten AC-Methode die Flussänderungen aufgrund äußerer Einflüsse, wie der Beleuchtung, beobachtet werden. Langzeitmessungen über 9 Tage zeigten einen der Beleuchtung folgenden Flussverlauf - auch bei sehr geringen mittleren Flussänderungen von unter 200 µm/s.
Bloch-Siegert Phasenkodierung
Um eine Phasenkodierung ohne die Induktion von Wirbelströmen zu erhalten, wurde im Rahmen der Arbeit die ortsabhängige Phasenkodierung mittels B1-Gradienten entwickelt. Diese Technik basiert auf HF-Wechselfeldern und benutzt den sogenannten BS-Shift um einen B1-feldabhängigen Frequenzshift zu induzieren. Zwei Rekonstruktionstechniken wurden entwickelt, um die Rekonstruktion von entzerrten Bildern zu ermöglichen. Dies war notwendig, da die Kodierung mittels BS-Shift von B1² abhängt. Infolgedessen wird bei der Verwendung von konstanten HF-Gradienten eine vom Quadrat des Ortes abhängige Phasenkodierung induziert. Als Alternative zu diesem Verfahren wurde ein Gradient entwickelt, der einen wurzelförmigen Feldverlauf hat und somit die lineare Kodierung ohne angepasste Rekonstruktionstechniken ermöglicht.
Diese Arbeit befasst sich mit der Konzeption, Umsetzung und Charakterisierung eines Rönt- genmikroskops für harte Röntgenstrahlung mit der Möglichkeit zur dreidimensionalen Bild- gebung. Der vorgestellte Aufbau basiert auf geometrischer Vergrößerung und verzichtet im Gegensatz zu anderen Röntgenmikroskopiemethoden auf den Einsatz optischer Elemente. Dreidimensionale Bildgebung wird durch einen linearlaminographischen Aufnahmemodus realisiert, bei dem unterschiedliche Durchstrahlungsrichtungen durch das Objekt durch eine relative Verschiebung von Quelle und Detektor zustande kommen. Die Röntgenquelle des Mikroskops besteht aus einer zu einer Nanofokusröntgenröhre um- gebauten Elektronenmikrosonde mit 30 kV Beschleunigungsspannung (dies entspricht einer Wellenlänge von bis zu 0,041 nm). Durch die Elektronenoptik kann ein intensiver Elektronen- strahl anstelle eine Probe auf ein Transmissionstarget fokussiert werden. In dieser Arbeit wird eine Möglichkeit evaluiert, die Schichtdicke der röntgenaktiven Schicht des Transmissionstar- gets für die gegebene Beschleunigungsspannung zu optimieren. Dabei werden eine Schichtdi- cke für maximale Röntgenleistung (700 nm Wolfram) und eine für maximale Röntgenleistung bezogen auf die entstehende Quellfleckgröße (100 nm Wolfram) identifiziert. Dadurch erreicht dieses System eine laterale Ortsauflösung von 197 nm, gemessen an einem Siemensstern. Diese ist eine Größenordnung besser als bei modernen SubμCT-Anlagen, die zur zerstörungsfrei- en Prüfung eingesetzt werden, und einen Faktor 2 besser als bei Laborröntgenmikroskopen basierend auf Fresnel’schen Zonenplatten. Abgesehen von der lateralen Auflösung bei hochkontrastigen Objekten werden auch die Abbil- dungseigenschaften für schwach absorbierende Proben mit Inline-Phasenkontrastbildgebung untersucht. Dazu wird eine Methode entwickelt mit der anhand der gegebenen Anlagenpara- meter der optimale Quell-Objekt-Abstand zur Maximierung des Fringe-Kontrasts gefunden werden kann. Dabei wird die Ausprägung des Fringe-Kontrasts auf die Phase −iα zurück geführt. Das vorgeschlagene Modell wird durch Messungen am Röntgenmikroskop und an einer weiteren Röngtenanlage verifiziert. Zur Beurteilung der dreidimensionalen Bildgebung mit dem vorgeschlagenen linearlaminogra- phischen Aufnahmemodus kann dieser auf eine konventionelle Computertomographie mit ein- geschränktem Winkelbereich zurückgeführt werden und so die maximal erreichbare Winkel- information bestimmt werden. Des Weiteren werden numerische Berechnungen durchgeführt, um die Einflüsse von Rauschen und geometrischen Vorgaben einschätzen zu können. Ein experimenteller Test des Laminographiesystems wird anhand eines hochkontrastigen (Fres- nel’sche Zonenplatte) und eines niederkontrastigen Objekts (Kohlefasergewebe) durchgeführt. Es zeigte sich, dass die laterale Auflösung während der dreidimensionalen Rekonstruktion gut erhalten bleibt, die Tiefenauflösung aber nicht die gleiche Qualität erreicht. Außerdem konnte festgestellt werden, dass die Tiefenauflösung sehr stark von der Geometrie und Zusammen- setzung des untersuchten Objekts abhängt.
The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup.
SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common.
The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality.
For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer.
The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to:
• Test theoretical predictions about image quality optima.
• Optimize image quality for a specific application.
• Find new mechanisms to improve image quality.
The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically.
The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result.
SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters.
The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable.
Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot.
The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task.
Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die benötigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle nötigen Komponenten für ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalitäten (MRT/MPI) in einer einzigen Apparatur gezeigt.
Auf diesem Entwicklungsweg sind zusätzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Präpolarisationssystems, mit dem das Präpolarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierfür wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier präsentierten Theorie und den Simulationsergebnissen übereinstimmend verglichen werden.
MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden können. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochauflösenden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht möglich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgeführt und die empfindliche Lokalisation von Kontrastmittel mit der Überlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zukünftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes Stück näher.
Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer.
CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb äußerst interessant, da seine Bandlücke als Nanopartikel verschiebbar ist. Für die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandlückenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS für einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandlückenverschiebung dort nicht auftritt. Wissenschaftler bemühen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in wässrigen Lösungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien für die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, müssen die CdS Nanopartikel kleiner als 100 A sein.
In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandlücke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der Lösung von CdS im Trägerstoff, da CdS in den meisten Flüssigkeiten nicht löslich ist und ausfällt. Die Stabilisierung in wässrigen Lösungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigsäure EDTA erfolgreich durchgeführt. Mit EDTA können jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem können Parameter wie Größe und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr ähnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser löslich sind (Bsp. Kurkumin). Ein vielversprechender Lösungsweg ist dort, die Wirkstoffe in große Trägerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut löslich sind. In meiner Arbeit habe ich genau diesen Ansatz für CdS verfolgt. Als Trägerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gewählt, da es die größte Masse bei gleichzeitig höchstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenlänge hat. P123 ist ein ternäres Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei Böcken, dem mittlere Block Polypropylenoxid PPO und den beiden äußeren Blöcken Polyethylenoxid PEO. Der Buchstabe P steht für pastös, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molekülen kann bewusst über geringe Temperaturänderungen gesteuert werden. Bei ungefähr Raumtemperatur liegen Mizellen vor, die sich bei höheren Temperaturen von sphärischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Flüssigkristall. Ich habe in meiner Arbeit zunächst P123 mit Hilfe von Röntgenstreuung untersucht. Anders als andere Methoden gibt Röntgenstreuung direkten Aufschluss über die Morphologie der Stoffe. Röntgenstreuung kann die Mischung von P123 mit CdS abbilden und lässt darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden.
Für die Stabilisierung der Nanopartikel ist es zunächst notwendig die richtigen Temperaturen für die Ausgangslösungen und gemischten Lösungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch für die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung für Flüssigkeiten fürs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschlüsseln. Diese Röntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu können. Röntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Flüssigkeit und in verschiedenen Konzentrationen analysiert werden kann.
Für die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabhängige Verhalten von P123 präzise mit Röntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. Für 5 wtp konnten die Größen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration für diese Konzentration konnten dank des neu eingeführten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgeschätzt, sowie eine Hysterese zwischen dem Heizen und Abkühlen festgestellt werden. Für die Konzentration von 10 wtp wurden kleinere Temperaturschritte gewählt und die Messungen zusätzlich absolut kalibriert. Es wurden die Größen und Streulängendichten SLD der Unimere und Mizellen präzise bestimmt und ein vollständiges Form-Phasendiagramm erstellt. Auch für diese Konzentration konnte eine Hysterese eindeutig an der Größe, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen über die Hydrierung und Hysterese komplexer Kern-Hülle Modelle zu machen. Für die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergrößert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abhängigkeit der Temperatur.
Durch das Mischen zweier Lösungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbfärbung der Lösung, und somit die Bildung des CdS, in Abhängigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. Höhere Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandlücke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandlücke von ungefähr 0,05 eV im Vergleich zum Festkörper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die flüssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht ändert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Flüssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizität stabilisiert. Die Anfangs definierten Kriterien für eine erfolgreiche Stabilisierung wurden erfüllt.
P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Flüssigkristalls, als auch im Kern der Mizelle zu stabilisieren.