Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Doctoral Thesis (4)
Keywords
- Autophagie (2)
- Diabetes mellitus (2)
- Thymus (2)
- Antigen presentation (1)
- Antigenpräsentation (1)
- Autoimmunity (1)
- Autoimmunität (1)
- Autophagy (1)
- CLEC16A (1)
- Diabetes Mellitus (1)
Institute
Sonstige beteiligte Institutionen
PTPN22 ist eine Proteinthyrosinphosphatase, die in hämatopoetischen Zellen exprimiert wird und einen negativen regulatorischen Effekt auf die Aktivierung und Differenzierung von Immunzellen ausübt.
In genomweiten Assoziationsstudien konnte ein Einzelnukleotidmolymorphismus (SNP) von PTPN22 ermittelt werden (PTPN22 R620W), der mit verschiedenen Autoimmunerkrankungen assoziiert ist, u.a. Typ-1-Diabetes (T1D). Die exakte Wirkweise des SNP ist jedoch nicht bekannt.
In Versuchen mit NOD-Mäusen konnte durch einen Knockdown (KD) von PTPN22 ein klinischer Schutz dieser Tiere vor T1D nachgewiesen werden.
Die vorliegende Arbeit wurde zur weiteren Untersuchung möglicher zellulärer Ursachen für diesen klinischen Schutz durchgeführt.
In Zellkulturen konnte kein Einfluss von PTPN22 auf die Differenzierungseigenschaften von T-Zellen sowie ein nur geringer Einfluss auf die suppressiven Eigenschaften von regulatorischen T-Zellen in suppression assays nachgewiesen werden.
In Zellverteilungsversuchen konnte gezeigt werden, dass in Mäusen mit PTPN22-Knockdown eine signifikant verminderte Anzahl an CD8+ und CD4+-Zellen im Pankreas zum Zeitpunkt der Pankreatitis vorlagen, wodurch ein klinischer Schutz erklärt werden könnte.
Der Effekt auf das Pankreasinfiltrat könnte auf veränderte Priming-Verhältnisse in pankreatischen Lymphknoten zurückzuführen sein, wobei vermehrte Treg-Zellen eine Auswirkung v.a. auf die Differenzierung von naiven T-Zellen und das Migrationsverhalten von T-Effektor-Zellen haben könnten.
Genome-wide association studies revealed CLEC16A as a candidate gene for Type 1 Diabetes and multiple other autoimmune disorders. The function of CLEC16A remains unknown. However, previous work showed that the CLEC16A ortholog ema and the murine Clec16a were both implicated in autophagy, a process partially required for MHC class II loading and antigen presentation. Furthermore, studies could show that autophagy was required in thymic epithelial cells for antigen presentation during T cell selection, suggesting a possible role of CLEC16A in T cell selection in the thymus. Additionally, it was postulated that CLEC16A may function as an expression quantitative trait locus for its neighboring genes and that Clec16a KD was involved in pancreatic islet function and impaired insulin secretion and glucose homeostasis. Prior to this work, Schuster et al. had created a Clec16a KD NOD mouse, which was protected from spontaneous autoimmune diabetes.
For this work it was hypothesized that CLEC16A variation serves as a Type 1 Diabetes risk gene by affecting autophagy in thymic epithelial cells, which modulates antigen presentation and shapes the T cell repertoire. To expand and complement previous findings by Schuster et al., this thesis aimed to investigate how CLEC16A modifies the function of thymic epithelial cells. For this purpose, CLEC16A KD was induced in human cells via RNA interference and autophagy was studied through immunoblotting. Additionally, inflammation of pancreatic tissue in Clec16a KD NOD mice was scored using H.E. stained pancreatic sections. Thymic transplantation experiments were conducted to test whether the effects of Clec16a KD were T cell intrinsic. Also, intraperitoneal glucose tolerance tests were performed to study glucose homeostasis in Clec16a KD NOD animals. Finally, using qPCR, gene expression levels of neighboring genes such as Dexi and Socs1 were measured to study Clec16a as an expression quantitative trait locus.
In combination with the findings of Schuster et al., this thesis demonstrates that Clec16a KD reduces the severity of insulitis and protects from onset of spontaneous diabetes in the NOD mouse. Disease protection is conveyed by impaired autophagy in TEC, which leads to altered T cell selection and hyporeactive CD4+ T cells. The effects of Clec16a KD in the NOD mouse are thymus intrinsic. Glucose homeostasis remains unchanged in the Clec16a KD NOD mouse and plays no role in disease protection. Clec16a and Dexi presented similar expression levels, but further studies are required to investigate a clear link between these two genes. Finally, impaired autophagy could be replicated in human CLEC16A KD cells, which demonstrates a conserved function of CLEC16A and suggests a possible link between CLEC16A variation and risk of autoimmune disease in human.
Das Gen CLEC16A ist mit der Autoimmunerkrankung Typ-1-Diabetes assoziiert. NOD-Mäuse mit einem Clec16a-KD sind vor der Entwicklung von Diabetes geschützt, der entscheidende Wirkungsort für Clec16a sind dabei TECs. Im Rahmen zentraler Toleranz präsentieren TECs CD4+ Thymozyten Selbstantigene auf MHC II-Komplexen. Autophagie ist ein Zellprozess, der in TECs MHC II-Komplexen Selbstantigene zuführt und so für die Entwicklung zentraler Toleranz essentiell ist. Das Ortholog von CLEC16A, ema, fördert die Bildung von Autophagosomen. So wurde vermutet, dass CLEC16A ein Suszeptibilitätsgen für Typ-1-Diabetes ist, weil es Autophagie in TECs und somit deren MHC II-Beladung verändert. Die vorliegende Arbeit schaltete CLEC16A in einer humanen Zelllinie durch RNAi aus und untersuchte die autophagische Aktivität dieser Zellen. Außerdem untersuchte sie die Autophagie von TECs aus NOD-Clec16a-KD-Mäusen. Die Beurteilung erfolgte morphologisch durch Immunzytochemie bzw. -histochemie und funktionell durch Immunoblots. Es wurde gezeigt, dass der KD von CLEC16A in vitro und in vivo Autophagie funktionell beeinträchtigt. Damit liefert die vorliegende Arbeit zusammen mit den Ergebnissen der Arbeitsgruppe Kissler einen möglichen Erklärungsansatz, warum CLEC16A ein mit Typ-1-Diabetes assoziiertes Gen ist. CLEC16A fördert Autophagie in TECs, was die Selbstantigen-Beladung von MHC II-Komplexen verändert. Selbstreaktive CD4+ Thymozyten führen so zum Verlust zentraler Toleranz und der Entwicklung von Typ-1-Diabetes. Weitere Untersuchungen sind jedoch notwendig, um diese Hypothese zu bekräftigen.
CD4+Foxp3+ Tregs can be induced in vitro by TGF-b stimulation. Here, CNS1 deficient CD4+ T cells were found to show compromised Foxp3 upregulation in vitro compared to CNS1 WT CD4+ T cells. Moreover, we could demonstrate that antigen-specific CD4+Foxp3+ Tregs can be induced in vivo by tolerogenic antigen stimulation. Parenteral application of agonist BDC2.5 mimetope induced Foxp3 expression in CD4+ BDC2.5 tg cells. We could show that induction of Foxp3 expression by tolerogenic peptide stimulation is impaired in CNS1 deficient CD4+ BDC2.5 tg cells compared to CNS1 WT CD4+ BDC2.5 tg controls. These results indeed indicate that in vivo induced Tregs share mechanistic characteristics with naturally occurring pTregs.
Additional in vivo experiments with blocking monoclonal anti-TGF-b demonstrated that high dosage TGF-b blockade abrogated peptide-induced Foxp3 expression in CNS1 WT BDC2.5 tg CD4+ cells, akin to what is seen for impaired Foxp3 upregulation in peptide-stimulated CNS1 KO BDC2.5 tg CD4+ cells without anti-TGF-b-treatment.
Adoptive transfer of CD4+CD25- T cells in T cell deficient recipients dramatically increased CD4+Foxp3+ Treg frequencies in both CNS1 WT CD4+ and CNS1 KO CD4+ donor cells. Despite an initially lower increase in Foxp3 expression in CNS1 KO donor cells compared to CNS1 WT donor cells early after transfer, in this setting impaired Treg induction in CNS1 deficient cells was not preserved over time. Consequently, diabetes onset and progression were indistinguishable between mice that received CNS1 WT or CNS1 KO donor cells. Additional Foxp3 induction by peptide stimulation of immunodeficient recipients after transfer of CNS1 WT BDC2.5. tg or CNS1 KO BDC2.5 tg donor cells was not detectable.