Refine
Has Fulltext
- yes (15)
Is part of the Bibliography
- yes (15)
Document Type
- Doctoral Thesis (15)
Keywords
- Exziton-Polariton (4)
- Optischer Resonator (3)
- Absorptionsspektroskopie (2)
- Bose-Einstein-Kondensation (2)
- Drei-Fünf-Halbleiter (2)
- Molekularstrahlepitaxie (2)
- Topologischer Isolator (2)
- topological insulator (2)
- Atomuhr (1)
- Bi2Se3 (1)
Institute
Sonstige beteiligte Institutionen
Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie Lösungen für aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abhörsichere Kommunikationsprotokolle und könnte, mit der Realisierung von Quantenrepeatern, auch über große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) könnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu lösen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik genügen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu können. In halbleiterbasierten Ansätzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten für diese Experimente etabliert. Halbleiterquantenpunkte weisen große Ähnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich überdies als exzellente Emitter für einzelne und ununterscheidbare Photonen aus. Außerdem können mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So können stationäre Quantenbits (Qubits) in Form von Elektronenspinzuständen gespeichert werden und mittels Spin-Photon-Verschränkung weit entfernte stationäre Qubits über fliegende photonische Qubits verschränkt werden.
Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften für Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis für das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie ermöglicht höchste kristalline Qualitäten und bietet die Möglichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erhöht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verstärkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. Für die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden.
Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz:
Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind für Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration für Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Kohärenzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavitäten weisen größere Werte für die Spindephasierungszeit auf als Mikro- und Nanotürmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer.
In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle für einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensität und optische Qualität mit Halbwertsbreiten nahe der natürlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42% für reine Einzelphotonenemission bestimmt und übersteigt damit die, für eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33%) deutlich. Als Grund hierfür konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavitäten einerseits als Nukleationszentren für das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtbündelung verbessern.
In weiterführenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschränkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein für halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es möglich, die komplette Tomographie eines verschränkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. Überdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei räumlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein für Quantenrepeater darstellt.
Gekoppeltes Quantenfilm-Quantenpunkt System:
Weitere Herausforderungen für optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerstörungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein kürzlich veröffentlichtes theoretisches Konzept könnte hierzu einen eleganten Weg eröffnen: Hierbei wird die spinabhängige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgenützt. So könnte die Spin-Information zerstörungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits über größere Distanzen ermöglicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abhängig von der Güte des Mikroresonators, über mehrere μm ausdehnen kann. Dies und weitere mögliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems wünschenswert ist.
In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universität Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavität mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualität und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer Nähe zum Quantenfilm gemessen werden.
Positionierte Quantenpunkte:
Für die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualität ist eine skalierbare technologische Produktionsplattform wünschenswert. Dazu müssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden können. Basierend auf zweidimensionalen, regelmäßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip für die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit geätzten Nanolöchern, welche als Nukleationszentren für das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erhöhte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenlänge erreicht werden.
The controlled shaping of ultrashort laser pulses is a powerful technology and applied in many laser laboratories today. Most of the used pulse shapers are only able to produce linearly polarized pulses shaped in amplitude and phase. Some devices are also capable of producing limited time-varying polarization profiles, but they are not able to control the amplitude. However, for some state-of-the-art non-linear time-resolved methods, such as polarization-enhanced two-dimensional spectroscopy, the possibility of controlling the amplitude and the polarization simultaneously is desirable.
Over the last years, different concepts have been developed to overcome these restrictions and to manipulate the complete vector-field of an ultrashort laser pulse with independent control over all four degrees of freedom - phase, amplitude, orientation, and ellipticity. The aim of this work was to build such a vector-field shaper. While the basic concept used for our setup is based on previous designs reported in the literature, the goal was to develop an optimized optical design that minimizes artifacts, allowing for the generation of predefined polarization pulse sequences with the highest achievable accuracy.
In Chapter 3, different approaches reported in the literature for extended and unrestricted vector-field control were examined and compared in detail. Based on this analysis, we decided to follow the approach of modulating the spectral phase and amplitude of two perpendicularly polarized pulses independently from each other in two arms of an interferometer and recombining them to a single laser pulse to gain control over the complete vector field.
As described in Chapter 4, the setup consists of three functional groups: i) an optical component to generate and recombine the two polarized beams, ii) a 4f setup, and iii) a refracting telescope to direct the two beams under two different angles of incidence onto the grating of the 4f setup in a common-path geometry. This geometry was chosen to overcome potential phase instabilities of an interferometric vector-field shaper. Manipulating the two perpendicularly polarized pulses simultaneously within one 4f setup and using adjacent pixel groups of the same liquid-crystal spatial light modulator (LC SLM) for the two polarizations has the advantages that only a single dual-layer LC SLM is required and that a robust and compact setup was achieved. The shaping capabilities of the presented design were optimized by finding the best parameters for the setup through numerical calculations to adjust the frequency distributions for a broad spectrum of 740 – 880 nm. Instead of using a Wollaston prism as in previous designs, a thin-film polarizer (TFP) is utilized to generate and recombine the two orthogonally polarized beams. Artifacts such as angular dispersion and phase distortions along the beam profile which arise when a Wollaston prism is used were discussed. Furthermore, it was shown by ray-tracing simulations that in combination with a telescope and the 4f setup, a significant deformation of the beam profile would be present when using a Wollaston prism since a separation of the incoming and outgoing beam in height is needed. The ray-tracing simulations also showed that most optical aberrations of the setup are canceled out when the incoming and outgoing beams propagate in the exact same plane by inverting the beam paths. This was realized by employing a TFP in the so-called crossed-polarizer arrangement which has also the advantage that the polarization-dependent efficiencies of the TFP and the other optics are automatically compensated and that a high extinction ratio in the order of 15000:1 is reached. Chromatic aberrations are, however, not compensated by the crossed-polarizer arrangement. The ray-tracing simulations confirmed that these chromatic aberrations are mainly caused by the telescope and not by the cylindrical lens of the 4f setup. Nevertheless, in the experimentally used wavelength range of 780 – 816 nm, only minor distortions of the beam profile were observed, which were thus considered to be negligible in the presented setup.
The software implementation of the pulse shaper was reviewed in Chapter 5 of this thesis. In order to perform various experiments, five different parameterizations, accounting for the extended shaping capabilities of a vector-field shaper, were developed. The Pixel Basis, the Spectral Basis, and the Spectral Taylor Basis can generally be used in combination with an optimization algorithm and are therefore well suited for quantum control experiments. For multidimensional spectroscopy, the Polarized Four-Pulse Basis was established. With this parameterization pulse sequences with up to four subpulses can be created. The polarization state of each subpulse can be specified and the relative intensity, phase, and temporal delay between consecutive subpulses can be controlled. In addition, different software programs were introduced in Chapter 5 which are required to perform the experiments conducted in this work.
The experimental results were presented in Chapter 6. The frequency distribution across the LC SLM was measured proving that the optimal frequency distribution was realized experimentally. Furthermore, the excellent performance of the TFP was verified. In general, satellite pulses are emitted from the TFP due to multiple internal reflections. Various measurements demonstrated that these pulses are temporally separated by at least 4.05 ps from the main pulse and that they have vanishing intensity. The phase stability between the two arms of the presented common-path setup σ = 28.3 mrad (λ/222) over 60 minutes. To further improve this stability over very long measurement times, an on-the-fly phase reduction and stabilization (OPRAS) routine utilizing the pulse shaper itself was developed. This routine automatically produces a compressed pulse with a minimized relative phase between the two polarization components. A phase stability of σ = 31.9 mrad (λ/197) over nearly 24 hours was measured by employing OPRAS. Various pulse sequences exceeding the capabilities of conventional pulse shapers were generated and characterized. The experimental results proved that shaped pulses with arbitrary phase, amplitude, and polarization states can be created. In all cases very high agreement between the target parameters and the experimental data was achieved.
For the future use of the setup also possible modifications were suggested. These are not strictly required, but all of them could further improve the performance and flexibility of the setup. Firstly, it was illustrated how a “dual-output” of the setup can be realized. With this modification it would be possible to use the main intensity of the shaped pulse for an experiment while using a small fraction to characterize the pulse or to perform OPRAS simultaneously. Secondly, the basic idea of replacing the telescope by focusing mirrors in order to eliminate the chromatic aberrations was presented. Regarding the different parameterizations for vector-field shaping, some modifications increasing the flexibility of the implemented bases and the realization of a von Neumann Basis for the presented setup were proposed. In future experiments, the vector-field shaper will be used in conjunction with a photoemission electron microscope (PEEM). This approach combines the temporal resolution provided by ultrashort laser pulses with the high spatial resolution gained by electron microscopy in order to perform two-dimensional spectroscopy and coherent control on nanostructures with polarization-shaped femtosecond laser pulses. In combination with other chiral-sensitive experimental setups implemented earlier in our group, the vector-field shaper opens up new perspectives for chiral femtochemistry and chiral control.
The designed vector-field shaper meets all requirements to generate high-precision polarization-shaped multipulse sequences. These can be used to perform numerous polarization-sensitive experiments. Employing the OPRAS routine, a quasi-infinitely long phase stability is achieved and complex and elaborated long-term measurements can be carried out. The fact that OPRAS demands no additional hardware and that only a single dual-layer LC SLM and inexpensive optics are required allows the building of a vector-field shaper at comparatively low costs. We hope that with the detailed insights into the optical design process as well as into the software implementation given in this thesis, vector-field shaping will become a standard technique just as conventional pulse shaping in the upcoming years.
Topologische Isolatoren gehören zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die Lösung dieser Fragen voran. Topologische Rand- bzw. Oberflächenzustände wurden für unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch für GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bedürfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit präsentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen.
Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess ermöglicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse für Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate präsentiert. Auch mit verbessertem Prozess zeigten sich Leckströme zum Substrat. Diese erschweren eine elektrostatische Kontrolle über Backgates. Die erstmals durch optische Anregung präsentierte Manipulation der Ladungsträgerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates.
Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erhöhten Oberfläche-zu-Volumen Verhältnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodrähte und -flocken mittels Molekularstrahlepitaxie für die Verwendung als topologischer Isolator hergestellt.
Ein Quantensprung – Kapitel 1 führt über die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zustände realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen.
GaSb/InAs Doppelquantenfilme
Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingeführt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfläche aber topologisch geschützte Zustände auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen – abhängig vom Aufbau der Heterostruktur – eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat für die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb gehören zur 6,1 Ångström-Familie, welche für ihre opto-elektronischen Eigenschaften bekannt ist und häufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 Ångström-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein Überblick über die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab.
Zu Beginn dieser Arbeit stellten Kurzschlusskanäle eine Herausforderung für die Detektion der topologischen Randkanäle dar. Kapitel 3 behandelt Lösungsansätze hierfür und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zukünftige Realisation topologischer Randkanäle. In Abschnitt 3.1 werden numerische Simulationen präsentiert, die sich mit der Inversion der elektronischen Niveaus in Abhängigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs beschäftigen. Ein geeigneter Schichtaufbau für Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird präsentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualität begründet. Ein Wechseln von binärem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinlängliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster Ätzprozesse – eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes – liefert zusammen mit der Entfernung von Oberflächenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver Ätzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderstände, ohne Kurzschlusskanäle zu erzeugen. Abschnitt 3.4 gibt einen kompakten Überblick, über den im weiteren Verlauf der Arbeit verwendeten „best practice“ Prozess.
Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 präsentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde über numerische Simulationen so gewählt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am Übergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen für konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen bestätigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierfür kommen mehrere Ursachen in Betracht: Eine Überschätzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitfähigkeit wurden Al-haltigen Schichten am GaSb/InAs Übergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde.
Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungsträgertyps der InAs/GaSb-Doppelquantentöpfe gibt eine zusätzliche Kontrollmöglichkeit im Phasendiagramm. Optische Anregung ermöglicht den Wechsel der Majoritätsladungsträger von Elektronen zu Löchern. Dabei wird ein Regime durchlaufen, in dem beide Ladungsträger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitfähigkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zustände belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die Möglichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zustände in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erklärt. Sie wird in Abhängigkeit von der Temperatur, der Anregungswellenlänge sowie der Anregungsintensität untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines Übergitters auf der Substratseite der Quantenfilmstruktur essentiell für die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren Möglichkeiten, wie optisch definierte topologischen Phasen-Grenzflächen, diskutiert.
Bi2Se3 Nanostrukturen
Mit Blick auf die Vorteile eines erhöhten Oberfläche-zu-Volumen Verhältnisses ist die Verwendung von Nanostrukturen für das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt für die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodrähten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erläutert (Abschnitt 6.1). Ausgehend von einer Einführung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erklärung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochauflösender Röntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodrähte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus für Nanodrähte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtröpfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3).
Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten
(2019)
Eine technologisch besonders vielversprechende Art von Mikrokavitäten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Größe seiner Wellenlänge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgröße einzufangen entstand die Möglichkeit neue Phänomene der Licht-Materie Wechselwirkung zu studieren. Der Oberflächenemitter (VCSEL), welcher sich das veränderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits länger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavitäten in der technologischen Gesellschaft der nächsten Generation hoffen.
Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavitäten solcher Qualität herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabhängigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von kohärentem Licht über den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes ähneln denen eines VCSELs, allerdings bei einigen Größenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue Möglichkeiten für besonders energiesparende Anwendungen in der Photonik eröffnen.
Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festkörperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasenübergang des Systems über seine Kohärenz- und Spineigenschaften. Es folgt eine knappe überblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden.
Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements
Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential ermöglicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als verändertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird über Verschiebung der Emissionslinie zu höheren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erläutert und theoretisch nachgebildet werden.
Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilität in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabhängigkeit der Ladungsträger von der Dichte des Ladungsträgerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verständnis der Hysterese ein elektrisches Rauschen über den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erklärt.
Die Hysterese ermöglicht außerdem den Nachweis eines optischen Schalteffekts über eine zusätzliche Ladungsträgerinjektion mit einem Laser weit über der Bandkante des Systems, um den positiven Rückkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben.
Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft
Polaritonen können durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit über ihren Exzitonanteil stark wechselwirken zu können. Die Möglichkeit durch Lithographie solche eindimensionalen Kanäle zu definieren, wurde bereits in verschiedenen Prototypen für Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ansätze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen über die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert über halbgeätzte Spiegel und zum anderen über eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher phänomenologische Ähnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung ermöglicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abhängigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms ermöglicht wird. Die Mikroscheibe funktioniert ähnlich einer Resonanztunneldiode. Sie ermöglicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zustände in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Strukturübergängen koppeln können. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung.
Kohärenzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen
Die Kohärenzeigenschaften der Emission von Polariton-Kondensaten ist seit längerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erhöhte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen kohärentem und thermischem Licht hinweist.
In dieser Arbeit wurde ein systematischer Weg untersucht, die Kohärenzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzunähern. Dies geschieht über den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrotürmchen mit verschiedenen Durchmessern. In Kohärenzmessungen wird der Einfluss dieser Veränderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch über den veränderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erklärt. Durch die stärkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrotürmchen wird die Streuwahrscheinlichkeit erhöht, was eine effizientere Relaxation in den Grundzustand ermöglicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund für die erhöhte Autokorrelation postuliert wurde.
Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, während ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der für einen Laser am Übergang zwischen thermischer und kohärenter Lichtquelle vorhergesagt wird, kann durch eine Überlagerung der beiden Zustände beschrieben werden. Über eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasenübergang des Kondensats mit Hilfe dem Anteil der kohärenten Partikel im System verfolgt werden. Dadurch, dass der gemessene Übergang dem Paradigma der thermisch-kohärenten Zustände folgt, wurde nachgewiesen, dass bei rötlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Kohärenz im Polaritonsystem spielen.
Polarisationskontrolle von Polariton-Kondensaten
Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungsträger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasenübergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf höheren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollständige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als Überlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizität wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erklärt werden über das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abhängen.
Weiterhin werden elliptische Mikrotürmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des Türmchens ausrichtet. In asymmetrischen Mikrotürmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die längere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrotürmchendurchmesser und größerer Ellipzität zu. Dies geschieht durch erhöhten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverhältnis von 3:2 kann ein nahezu vollständig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden.
Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen können.
Kohärenz- und Magnetfeldmessungen an Polariton-Kondensaten unterschiedlicher räumlicher Dimensionen
(2015)
Die Bose-Einstein-Kondensation (BEK) und die damit verbundenen Effekte wie Superfluidität und Supraleitung sind faszinierende Resultate der Quantennatur von Bosonen. Nachdem die Bose-Einstein-Kondensation für Atom-Systeme nur bei Temperaturen nahe dem absoluten Nullpunkt realisierbar ist, was einen enormen technologischen Aufwand benötigt, wurden Bosonen mit wesentlich kleineren Massen zur Untersuchung der BEK gesucht. Hierfür bieten sich Quasiteilchen in Festkörpern wie Magnonen oder Exzitonen an, da deren effektive Massen sehr klein sind und die Kondensationstemperatur dementsprechend höher ist als für ein atomares System. Ein weiteres Quasiteilchen ist das Exziton-Polariton als Resultat der starken Licht-Materie-Wechselwirkung in Halbleitermikrokavitäten, welches sowohl Materie- als auch Photoneigenschaften hat und dessen Masse theoretisch eine BEK bis Raumtemperatur erlaubt. Ein weiterer Vorteil dieses System ist die einfache Erzeugung des Bose-Einstein-Kondensats in diesen Systemen durch elektrisches oder optisches Injizieren von Exzitonen in die Halbleiter-Quantenfilme der Struktur. Außerdem kann die Impulsraumverteilung dieser Quasiteilchen leicht durch einfache experimentelle Methoden mittels eines Fourierraumspektroskopie-Aufbaus bestimmt werden. Durch die winkelabhängige Messung der Emission kann direkt auf die Impulsverteilung der Exziton-Polaritonen in der Quantenfilmebene zurückgerechnet werden, die zur Identifikation der BEK hilfreich ist. Deshalb wird das Exziton-Polariton als ein Modellsystem für die Untersuchung von Bose-Einstein-Kondensation in Festkörpern und den damit in Relation stehenden Effekten angesehen. In dieser Arbeit wird die Grundzustandskondensation von Exziton-Polaritonen in Halbleitermikrokavitäten verschiedener Dimensionen realisiert und deren Emissionseigenschaften untersucht. Dabei wird vor allem die Wechselwirkung des Polariton-Kondensats mit der der unkondensierten Polaritonen bzw. der Quantenfilm-Exzitonen im externen Magnetfeld verglichen und ein Nachweis zum Erhalt der starken Kopplung über die Polariton-Kondensationsschwelle hinaus entwickelt. Außerdem werden die Kohärenzeigenschaften von null- und eindimensionalen Polariton-Kondensaten durch Bestimmung der Korrelationsfunktion erster beziehungsweise zweiter Ordnung analysiert. Als Materialsystem werden hierbei die III/V-Halbleiter gewählt und die Quantenfilme bestehen bei allen Messungen aus GaAs, die von einer AlAs Kavität umgeben sind.
Eindimensionale Polariton-Kondensation - räumliche Kohärenz der Polariton-Drähte
Im ersten experimentellen Teil dieser Arbeit (Kapitel 1) wird die Kondensation der Polaritonen in eindimensionalen Drähten unter nicht-resonanter optischer Anregung untersucht. Dabei werden verschiedene Drahtlängen und -breiten verwendet, um den Einfluss des zusätzlichen Einschlusses auf die Polariton-Dispersion bestimmen zu können. Ziel dieser Arbeit ist es, ein eindimensionales Bose-Einstein-Kondensat mit einer konstanten räumlichen Kohärenz nach dem zentralen Abfall der g^(1)(r)-Funktion für große Abstände r in diesen Drähten zu realisieren (sogenannte langreichweitige Ordnung im System, ODLRO (Abkürzung aus dem Englischen off-diagonal long-range order).
Durch Analyse der Fernfeldemissionseigenschaften können mehrere Polariton-Äste, der eindimensionale Charakter und die Polariton-Kondensation in 1D-Systemen nachgewiesen werden. Daraufhin wird die räumliche Kohärenzfunktion g^(1)(r) mithilfe eines hochpräzisen Michelson-Interferometer, das im Rahmen dieser Arbeit aufgebaut wurde, bestimmt. Die g^(1)(r)-Funktion nimmt hierbei über große Abstände im Vergleich zur thermischen De-Broglie-Wellenlänge einen konstanten Plateauwert an, der abhängig von der Anregungsleistung ist. Unterhalb der Polariton-Kondensationsschwelle (Schwellleistung P_S) ist kein Plateau sichtbar und die räumliche Kohärenz ist nur im zentralen Bereich von unter |r| < 1 µm vorhanden. Mit ansteigender Anregungsleistung nimmt das zentrale Maximum in der Weite zu und es bildet sich das Plateau der g^(1)(r)-Funktion aus, das nur außerhalb des Drahtes auf Null abfällt. Bei P=1,6P_S ist das Plateau maximal und beträgt circa 0,15. Außerdem kann nachgewiesen werden, dass mit steigender Temperatur die Plateauhöhe abnimmt und schließlich bei T=25K nicht mehr gemessen werden kann. Hierbei ist dann nur noch das zentrale Maximum der Kohärenzfunktion g^(1)(r) sichtbar. Weiterhin werden die Ergebnisse mit einer modernen mikroskopischen Theorie, die auf einem stochastischen Mastergleichungssystem basiert, verglichen, wodurch die experimentellen Daten reproduziert werden können. Im letzten Teil des Kapitels wird noch die Kohärenzfunktion g^(1)(r) im 1D-Fall mit der eines planaren Polariton-Kondensats verglichen (2D).
Nulldimensionale Polariton-Kondensation - Kondensation und Magnetfeldwechselwirkung in einer Hybridkavität
Im zweiten Teil der Arbeit wird die Polariton-Kondensation in einer neuartigen Hybridkavität untersucht. Der Aufbau des unteren Spiegels und der Kavität inklusive der 12 verwendeten Quantenfilme ist analog zu den gewöhnlichen Mikrokavitäten auf Halbleiterbasis. Der obere Spiegel jedoch besteht aus einer Kombination von einem DBR (Abkürzung aus dem Englischen distributed Bragg reflector) und einem Brechungsindexkontrast-Gitter mit einem Luft-Halbleiterübergang (größt möglichster Brechungsindexkontrast). Durch die quadratische Strukturgröße des Gitters (Seitenlänge 5µm) sind die Polaritonen zusätzlich zur Wachstumsrichtung noch in der Quantenfilmebene eingesperrt, so dass sie als nulldimensional angesehen werden können (Einschluss auf der ungefähren Größe der thermischen De-Broglie-Wellenlänge). Um den Erhalt der starken Kopplung über die Kondensationsschwelle hinaus nachweisen zu können, wird ein Magnetfeld in Wachstumsrichtung angelegt und die diamagnetische Verschiebung des Quantenfilms mit der des 0D-Polariton-Kondensats verglichen. Hierdurch kann das Polariton-Kondensat von dem konventionellen Photonlasing in solchen Strukturen unterschieden werden. Weiterhin wird als letztes Unterscheidungsmerkmal zwischen Photonlasing und Polariton-Kondensation eine Messung der Autokorrelationsfunktion zweiter Ordnung g^(2)(t) durchgeführt. Dabei kann ein Wiederanstieg des g^(2)(t = 0)-Werts mit ansteigender Anregungsleistung nachgewiesen werden, nachdem an der Kondensationsschwelle der g^(2)(t = 0)-Wert auf 1 abgefallen ist, was auf eine zeitliche Kohärenzzunahme im System hinweist. Oberhalb der Polariton-Kondensationsschwelle P_S steigt der g^(2)(t = 0)-Wert wieder aufgrund zunehmender Dekohärenzprozesse, verursacht durch die im System ansteigende Polariton-Polariton-Wechselwirkung, auf Werte größer als 1 an. Für einen gewöhnlichen Photon-Laser (VCSEL, Abkürzung aus dem Englischen vertical-cavity surface-emitting laser) im monomodigen Betrieb kann mit steigender Anregungsleistung kein Wiederanstieg des g^(2)(t = 0)-Werts gemessen werden. Somit stellt dies ein weiteres Unterscheidungsmerkmal zwischen Polariton-Kondensation und Photonlasing dar.
Zweidimensionale Polariton-Kondensation - Wechselwirkung mit externem Magnetfeld
Im letzten experimentellen Kapitel dieser Arbeit wird die Magnetfeldwechselwirkung der drei möglichen Regime der Mikrokavitätsemission einer planaren Struktur (zweidimensional) untersucht. Dazu werden zuerst durch eine Leistungsserie bei einer Verstimmung des Photons und des Quantenfilm-Exzitons von d =-6,5meV das lineare, polaritonische Regime, das Polariton-Kondensat und bei weiterer Erhöhung der Anregungsleistung das Photonlasing identifiziert. Diese drei unterschiedlichen Regime werden daraufhin im Magnetfeld von B=0T-5T auf ihre Zeeman-Aufspaltung und ihre diamagnetische Verschiebung untersucht und die Ergebnisse der Magnetfeldwechselwirkung werden anschließend miteinander verglichen. Im linearen Regime kann die Abhängigkeit der Zeeman-Aufspaltung und der diamagnetischen Verschiebung vom exzitonischen Anteils des Polaritons bestätigt werden. Oberhalb der Polariton-Kondensationsschwelle wird eine größere diamagnetische Verschiebung gemessen als für die gleiche Verstimmung im linearen Regime. Dieses Verhalten wird durch Abschirmungseffekte der Coulomb-Anziehung von Elektronen und Löchern erklärt, was in einer Erhöhung des Bohrradius der Exzitonen resultiert. Auch die Zeeman-Aufspaltung oberhalb der Polariton-Kondensationsschwelle zeigt ein vom unkondensierten Polariton abweichendes Verhalten, es kommt sogar zu einer Vorzeichenumkehr der Aufspaltung im Magnetfeld. Aufgrund der langen Spin-Relaxationszeiten von 300ps wird eine Theorie basierend auf der im thermischen Gleichgewichtsfall entwickelt, die nur ein partielles anstatt eines vollständigen thermischen Gleichgewicht annimmt. So befinden sich die einzelnen Spin-Komponenten im Gleichgewicht, während zwischen den beiden Spin-Komponenten kein Gleichgewicht vorhanden ist. Dadurch kann die Vorzeichenumkehr als ein Zusammenspiel einer dichteabhängigen Blauverschiebung jeder einzelner Spin-Komponente und der Orientierung der Spins im Magnetfeld angesehen werden. Für das Photonlasing kann keine Magnetfeldwechselwirkung festgestellt werden, wodurch verdeutlicht wird, dass die Messung der Zeeman-Aufspaltung beziehungsweise der diamagnetischen Verschiebung im Magnetfeld als ein eindeutiges Werkzeug zur Unterscheidung zwischen Polariton-Kondensation und Photonlasing verwendet werden kann.
The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation.
In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established.
This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment.
Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation.
Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics.
In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bezüglich ihrer Nutzung für metrologische Untersuchungen zu analysieren und zu verbessern.
Hierfür wurden die räumlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. Für kommerziell erhältliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie bestätigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit Überlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die veränderte Fernfeldsituation wurde zunächst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlgüteuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3).
Eine weitere Untersuchung betraf die Linienbreitenabhängigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorlänge, der Facettenvergütung und der Gitterkopplung. Die erste Beobachtung betraf die Verschmälerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Veränderung der Resonatorlänge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorlänge eine Verschmälerung der Linienbreite um mehr als einen Faktor 3. Die Verlängerung der Kavität begünstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der Rückkopplung sehr klein ist. Im Falle reiner Indexkopplung wäre dies durch die veränderte κ · L-Lage deutlich zu spüren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivitäten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies lässt sich ausnutzen, um die Photonenlebensdauer in der Kavität zu erhöhen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen Längen die reine gebrochene Facette mit einer vergüteten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30% gehalten und die Rückfacette durch einen doppelten Reflektor auf ca. 85% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die Hälfte.
Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zusätzlich eingebrachten Verluste zu einer Vergrößerung der Linienbreiten beitragen, wird bei einem größeren geometrischen Gitterüberlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment bestätigen.
Zudem wurde eine Längenabhängigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei längeren Bauteilen ist deutlich ausgeprägter als bei kürzeren. So ist bei ähnlicher Verringerung des Gitterüberlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur“ 1,85 beobachtbar, aber bei der doppelten Kavitätslänge ist dieser Faktor schon auf 3,60 angestiegen.
Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt für lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde.
In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer veränderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterlängen untersucht. Die Phasenlage kann reversibel über den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, bestätigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenlänge mit ihrer zugehörigen Seitenmodenunterdrückung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass für die verschiedenen Längen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdrückung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zukünftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer.
In this work, a bridge was built between the so-far separate fields of spin defects and 2D systems: for the first time, an optically addressable spin defect (VB-) in a van der Waals material (hexagonal boron nitride) was identified and exploited. The results of this thesis are divided into three topics as follows:
1.) Identification of VB-:
In the scope of this chapter, the defect ,the negatively charged boron vacancy VB-, is identified and characterized. An initialization and readout of the spin state can be demonstrated optically at room temperature and its spin Hamiltonian contributions can be quantified.
2.) Coherent Control of VB-:
A coherent control is required for the defect to be utilized for quantum applications, which
Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind.
Die Dissertation beschäftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfläche beider Übergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine Fülle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfläche prozessiert wurde und eine bemerkenswerte Trialität aufweist. Dieses Bauelement kann unter anderem als ein herkömmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zusätzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall hängt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts lässt sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen verändern. Darüber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine ergänzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsströmen innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt.