Refine
Has Fulltext
- yes (14)
Is part of the Bibliography
- yes (14)
Document Type
- Doctoral Thesis (14)
Keywords
- Melanom (8)
- FOSL1 (2)
- Lungenkrebs (2)
- MMB (2)
- Mitose (2)
- Transkriptionsfaktor (2)
- p53 (2)
- 7-Dehydrocholesterol (1)
- Antioxidantien (1)
- Arachidonsäure (1)
Institute
- Graduate School of Life Sciences (9)
- Theodor-Boveri-Institut für Biowissenschaften (5)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (3)
- Fakultät für Biologie (1)
- Institut für Experimentelle Biomedizin (1)
- Medizinische Fakultät (1)
- Pathologisches Institut (1)
- Rudolf-Virchow-Zentrum (1)
Wilms tumor (WT) is the most common kidney cancer in childhood. It is a genetically heterogeneous tumor and several genetic alterations have been identified in WT patients. Recurrent mutations were found in the homeo-domain of SIX1 and SIX2 in high proliferative tumors (18.1% of the blastemal-type tumors) as well as in the microprocessor genes DROSHA and DGCR8 (18.2% of the blastemal-type tumors), indicating a critical role of the SIX-SALL pathway and aberrant miRNA processing in WT formation. Underlined by the fact that a significant overlap between mutations in DROSHA and SIX1 was found, indicating a synergistic effect.
To characterize the in vivo role of DROSHA and SIX mutations during kidney development and their oncogenic potential, I analyzed mouse lines with either a targeted deletion of Drosha or an inducible expression of human DROSHA or SIX1 carrying a tumor-specific E1147K or Q177R mutation, respectively.
The DROSHA mutation E1147K was predicted to act in a dominant negative manner. Six2-cre mediated deletion of Drosha in nephron progenitors led to a lethal phenotype with apoptotic loss of progenitor cells and early termination of nephrogenesis. Mosaic deletions via Wt1-creERT2 resulted in a milder phenotype with viable offspring that developed proteinuria after 2-4 weeks, but no evidence of tumor formation. Activation of the DROSHA-E1147K transgene via Six2-cre, on the other hand, induced a more severe phenotype with apoptosis of progenitor cells, proteinuria and glomerular sclerosis. The severely growth-retarded mice died within the first two months. This strong phenotype was consistent with the predicted dominant-negative effect of DROSHA-E1147K.
Analysis of the SIX1-Q177R mutation suggested that the mutation leads to a shift in DNA binding specificity instead of a complete loss of DNA binding. This may end up in subtle changes of the gene regulatory capacity of SIX1. Six2-cre mediated activation of SIX1-Q177R lead to a viable phenotype with no alterations or shortened life span. Yet a global activation of SIX1-Q177R mediated by Zp3-cre resulted in bilateral hydronephrosis and juvenile death of the mice.
To mimic the synergistic effect of DROSHA and SIX1 mutations, I generated compound mutants in two combinations: A homozygous deletion of Drosha combined with an activation of SIX1-Q177R and a compound mutant with activation of DROSHA-E1147K and SIX1-Q177R. Each mouse model variant displayed new phenotypical alterations. Mice with Six2-cre mediated homozygous deletion of Drosha and activation of SIX1-Q177R were not viable, yet heterozygous deletion of Drosha and activation of SIX1-Q177R led to hydronephrosis, proteinuria and an early death around stage P28. Combined activation of DROSHA-E1147K and SIX1-Q177R under Six2-cre resulted in proteinuria, glomerulosclerosis and lesions inside the kidney. These mice also suffered from juvenile death. Both mouse models could confirm the predicted synergistic effect.
While these results underscore the importance of a viable self-renewing progenitor pool for kidney development, there was no evidence of tumor formation. This suggests that either additional alterations in mitogenic or antiapoptotic pathways are needed for malignant transformation, or premature loss of a susceptible target cell population and early lethality prevent WT formation.
The evolutionary conserved Myb-MuvB (MMB) multiprotein complex is a transcriptional master regulator of mitotic gene expression. The MMB subunits B-MYB, FOXM1 as well as target genes of MMB are often overexpressed in different cancer types. Elevated expression of these genes correlates with an advanced tumor state and a poor prognosis for patients. Furthermore, it has been reported that pathways, which are involved in regulating the mitotic machinery are attractive for a potential treatment of cancers harbouring Ras mutations (Luo et al., 2009).
This suggest that the MMB complex could be required for tumorigenesis by mediating overactivity of mitotic genes and that the MMB could be a useful target for lung cancer treatment. However, although MMB has been characterized biochemically, the contribution of MMB to tumorigenesis is largely unknown in particular in vivo.
In this thesis, it was demonstrated that the MMB complex is required for lung tumorigenesis in vivo in a mouse model of non small cell lung cancer. Elevated levels of B-MYB, NUSAP1 or CENPF in advanced tumors as opposed to low levels of these proteins levels in grade 1 or 2 tumors support the possible contribution of MMB to lung tumorigenesis and the oncogenic potential of B-MYB.The tumor growth promoting function of B-MYB was illustrated by a lower fraction of KI-67 positive cells in vivo and a significantly high impairment in proliferation after loss of B-Myb in vitro. Defects in cytokinesis and an abnormal cell cycle profile after loss of B-Myb underscore the impact of B-MYB on proliferation of lung cancer cell lines. The incomplete recombination of B-Myb in murine lung tumors and in the tumor derived primary cell lines illustrates the selection pressure against the complete loss of B-Myb and further demonstrats that B-Myb is a tumor-essential gene. In the last part of this thesis, the contribution of MMB to the proliferation of human lung cancer cells was demonstrated by the RNAi-mediated depletion of B-Myb. Detection of elevated B-MYB levels in human adenocarcinoma and a reduced proliferation, cytokinesis defects and abnormal cell cycle profile after loss of B-MYB in human lung cancer cell lines underlines the potential of B-MYB to serve as a clinical marker.
Identifying novel driver genes in cancer remains a crucial step towards development of new therapeutic approaches and the basic understanding of the disease.
This work describes the impact of the AP1 transcription activator component FOSL1 on melanoma maintenance. FOSL1 is strongly upregulated during the progression of melanoma and the protein abundance is highest in metastases. I found that the regulation of FOSL1 is strongly dependent on ERK1/2- and PI3K- signaling, two pathways frequently activated in melanoma. Moreover, the involvement of p53 in FOSL1 regulation in melanoma was investigated. Elevated levels of the tumor suppressor led to decreased FOSL1 protein levels in a miR34a/miR34c- dependent manner.
The benefit of elevated FOSL1 amounts in human melanoma cell lines was analyzed by overexpression of FOSL1 in cell lines with low endogenous FOSL1 levels. Enhanced levels of FOSL1 had several pro-tumorigenic effects in human melanoma cell lines. Besides increased proliferation and migration rates, FOSL1 overexpression induced the colony forming ability of the cells. Additionally, FOSL1 was necessary for anchorage independent growth in 3D cell cultures. Microarray analyses revealed novel downstream effectors of FOSL1. On the one hand, FOSL1 was able to induce the transcription of different neuron-related genes, such as NEFL, NRP1 and TUBB3. On the other hand, FOSL1 influenced the transcription of DCT, a melanocyte specific gene, in dependence of the differentiation of the melanoma cell line, indicating dedifferentiation.
Furthermore, FOSL1 induced the transcription of HMGA1, a chromatin remodeling protein with reprogramming ability, which is characteristic for stem cells. Consequently, the influence of HMGA1 on melanoma maintenance was investigated. In addition to decreased proliferation and reduced anoikis resistance, HMGA1 knockdown reduced melanoma cell survival. Interestingly, the FOSL1 induced pro-tumorigenic effects were demonstrated to be dependent on the HMGA1 level. HMGA1 manipulation reversed FOSL1 induced proliferation and colony forming ability, as well as the anchorage independent growth effect.
In conclusion, I could show that additional FOSL1 confers a clear growth benefit to melanoma cells. This benefit is attributed to the induction of stem cell determinants, but can be blocked by the inhibition of the ERK1/2 or PI3K signaling pathways.
Peroxiredoxin 6 (PRDX6) is a bifunctional enzyme comprising a peroxidase and a Ca2+-independent phospholipase (iPLA2) activity. This renders the enzyme capable of detoxifying reactive oxygen species (ROS) and of catalyzing the liberation of arachidonic acid (AA) from cellular membranes. Released AA can be further metabolized to bioactive lipids including eicosanoids, which are involved in inflammation, cell growth, differentiation, invasion and proliferation. Human melanoma cells are often characterized by imbalances in both ROS and lipid levels, which can be generated by oncogenic signaling, altered metabolism or UV irradiation.
In previous studies, a comparative proteome analysis of the Xiphophorus fish melanoma model revealed a strong upregulation of Prdx6 in benign and malignant lesions compared to healthy skin. As the Xiphophorus melanoma model displays in many respects molecular characteristics that are similar to human melanoma, I investigated the functional role of PRDX6 in human melanoma cells.
The first part of the study deals with the regulation of PRDX6 in melanocytes and human melanoma cells. I could demonstrate that the protein level of PRDX6 was strongly enhanced by the induction of the EGFR orthologue Xmrk from the Xiphophorus fish as well as the human EGFR. The upregulation of PRDX6 was further shown to be mediated in a PI3K-dependent and ROS-independent manner.
The main part of the thesis comprises the investigation of the functional role of PRDX6 in human melanoma cells as well as the analysis of the underlying mechanism. I could show that knockdown of PRDX6 enhanced the oxidative stress response and led to decreased proliferation of melanoma cells. This cell growth effect was mainly mediated by the iPLA2 activity of PRDX6. Under conditions of strongly enhanced oxidative stress, the peroxidase activity became also important for cellular proliferation. Furthermore, the anti-proliferative effect in cells with lowered PRDX6 levels was the result of reduced cellular AA content and the decrease in the activation of SRC family proteins. Similarly, supplementation with AA led to regeneration of SRC family kinase activity and to an improvement in the reduced proliferation after knockdown of PRDX6. Since AA can be further processed into the prostaglandin PGE2, which has a pro-tumorigenic function in some cancer types, I further examined whether this eicosanoid is involved in the proliferative function of PRDX6. In contrast to AA, PGE2 was not consistently required for melanoma proliferation.
In summary, I could demonstrate that PRDX6 plays a major role in AA-dependent lipid signaling in melanoma cells and thereby regulates proliferation. Interestingly, the proliferation relevant iPLA2 activity can be pharmacologically targeted, and melanoma cell growth was clearly blocked by the inhibitor BEL. Thus, I could identify the phospholipase activity of PRDX6 as a new therapeutically interesting target for melanoma treatment.
The transcription factor NRF2 is considered as the master regulator of cytoprotective and ROS-detoxifying gene expression. Due to their vulnerability to accumulating reactive oxygen species, melanomas are dependent on an efficient oxidative stress response, but to what extent melanomas rely on NRF2 is only scarcely investigated so far. In tumor entities harboring activating mutations of NRF2, such as lung adenocarcinoma, NRF2 activation is closely connected to therapy resistance. In melanoma, activating mutations are rare and triggers and effectors of NRF2 are less well characterized.
This work revealed that NRF2 is activated by oncogenic signaling, cytokines and pro-oxidant triggers, released cell-autonomously or by the tumor microenvironment. Moreover, silencing of NRF2 significantly reduced melanoma cell proliferation and repressed well-known NRF2 target genes, indicating basal transcriptional activity of NRF2 in melanoma. Transcriptomic analysis showed a large set of deregulated gene sets, besides the well-known antioxidant effectors. NRF2 suppressed the activity of MITF, a marker for the melanocyte lineage, and induced expression of epidermal growth factor receptor (EGFR), thereby stabilizing the dedifferentiated melanoma phenotype and limiting pigmentation markers and melanoma-associated antigens. In general, the dedifferentiated melanoma phenotype is associated with a reduced tumor immunogenicity. Furthermore, stress-inducible cyclooxygenase 2 (COX2) expression, a crucial immune-modulating gene, was regulated by NRF2 in an ATF4-dependent manner. Only in presence of both transcription factors was COX2 robustly induced by H2O2 or TNFα. COX2 catalyzes the first step of the prostaglandin E2 (PGE2) synthesis, which was described to be associated with tumor immune evasion and reduction of the innate immune response.
In accordance with these potentially immune-suppressive features, immunocompetent mice injected with NRF2 knockout melanoma cells had a strikingly longer tumor-free survival compared to NRF2-proficient cells. In line with the in vitro data, NRF2-deficient tumors showed suppression of COX2 and induction of MITF. Furthermore, transcriptomic analyses of available tumors revealed a strong induction of genes belonging to the innate immune response, such as RSAD2 and IFIH1. The expression of these genes strongly correlated with immune evasion parameters in human melanoma datasets and NRF2 activation or PGE2 supplementation limited the innate immune response in vitro.
In summary, the stress dependent NRF2 activation stabilizes the dedifferentiated melanoma phenotype and facilitates the synthesis of PGE2. As a result, NRF2 reduces gene expression of the innate immune response and promotes the generation of an immune-cold tumor microenvironment. Therefore, NRF2 not only elevated the ROS resilience, but also strongly contributed to tumor growth, maintenance, and immune control in cutaneous melanoma.
Cell death is an essential aspect of life that plays an important role for successful development and tissue remodeling as well as for diseases. There are several different types of cell death that differ from each other in morphological, functional and biochemical ways. Regulated cell death that occurs in physiological processes is generally equated with programmed cell death (PCD), whereby apoptosis is the most studied form of PCD. Ferroptosis is a form of regulated cell death and unique in its requirements for iron and lipid peroxidation. It is linked to numerous biological processes, such as amino acid metabolism, phospholipid metabolism and sterol synthesis. Cholesterol biosynthesis is a complex pathway with a large number of enzymes and substrates that are potential target points for cellular dysfunctions. Motivated by the results from a CRISPR-based genetic screening in this thesis, we focused on 7-dehydrocholesterol reductase (DHCR7), the enzyme responsible for conversion of 7-dehydrocholesterol (7-DHC) to cholesterol. In this work we focused on the ferroptosis sensitive cell line HT1080 and generated a series of models to address the importance of DHCR7 in ferroptosis. Using CRISPR/Cas9, HT1080 DHCR7_KO and DHCR7/SC5D_KO cell lines were generated and used to validate their sensitivity against ferroptosis inducers and sterol consumption. We could show that 7-DHC is a strong antiferroptotic agent that could prevent cell death in genetic models as well as when supplemented directly to cells. Importantly, all the results obtained were subsequently confirmed in isogenic reconstituted pairs from the HT1080 DHCR7/SC5D_KO. Moreover, we demonstrate that this protective effect is not due to an inherent and unspecific resistance as the sensitivity to non-ferroptotic stimuli was equally effective in killing the HT1080 DHCR7_KO and DHCR7/SC5D_KO cell lines. We could also show that selenium present in the media has a strong impact on the activity of 7-DHC and this is because in its absence the effective concentration is rapidly decreased. Surprisingly we also demonstrate that removing sterol from cell culture triggers ferroptosis in cells unable to synthesize 7-DHC, suggestive that this could be used as a novel mechanism to trigger ferroptosis. Ultimately, in the present work we could show that unlike previously reported, 7-DHC is not only a toxic intermediate of the cholesterol biosynthesis pathway but under specific circumstances it has a strong pro-survival effect.
Bei Melanomen handelt es sich um die gefährlichste Form von Hautkrebs mit der höchsten Mortalitätsrate. Deshalb sind Untersuchungen dieser Hautkrebsart von immenser Bedeutung. Es ist bekannt, dass der AP-1-Transkriptionsfaktorkomplex eine große Rolle für Melanomentstehung und -progression spielt. In der vorliegenden Arbeit wurde die Funktion der AP-1 Komponente FOSL1 in Melanomen untersucht.
Hierbei konnte zunächst ermittelt werden, dass die FOSL1 Expression im humanen Melanom durch den MAPK-Signalweg vermittelt wird und von den Onkogenen BRAF und NRAS abhängig ist. Dies wird auch durch die Tatsache unterstützt, dass die Stabilität von FOSL1 durch MAPK reguliert wird.
Des Weiteren konnte gezeigt werden, dass FOSL1 in vielen Melanomzellen die Proliferation verstärkt und auch an Migration beteiligt ist. Da diese Prozesse zur Krebsprogression beitragen, deutet dies darauf hin, dass FOSL1 bei der Melanomentwicklung eine wichtige Funktion besitzt. Weiterhin konnten SLUG, SNAI3, IL6 und MMP14 als FOSL1-Zielgene identifiziert werden, deren Regulierbarkeit durch FOSL1, jedoch abhängig von der jeweiligen Zelllinie war. Somit konnte mit dieser Arbeit gezeigt werden, dass FOSL1 nicht nur, wie zuvor für Brustkrebszellen beschrieben, an Migration beteiligt ist, sondern auch zur Proliferation humaner Melanome beiträgt. Zukünftige Arbeiten werden zeigen, ob die identifizierten Gene für die FOSL1-vermittelte Migration und Proliferation verantwortlich sind.
PRC1 serves as a microtubule-bundling protein and is a potential therapeutic target for lung cancer
(2023)
Protein regulator of cytokinesis 1 (PRC1) is a microtubule-associated protein with essential roles in mitosis and cytokinesis. Furthermore, the protein is highly expressed in several cancer types which is correlated with aneuploidy and worse patient outcome. In this study it was investigated, whether PRC1 is a potential target for lung cancer as well as its possible nuclear role.
Elevated PRC1 expression was cell cycle-dependent with increasing levels from S-phase to G2/M-phase of the cell cycle. Thereby, PRC1 localized at the nucleus during interphase and at the central spindle and midbody during mitosis and cytokinesis. Genome-wide expression profiling by RNA sequencing of ectopically expressed PRC1 resulted in activation of the p53 pathway. A mutant version of PRC1, that is unable to enter the nucleus, induced the same gene sets as wildtype PRC1, suggesting that PRC1 has no nuclear-specific functions in lung cancer cells. Finally, PRC1 overexpression leads to proliferation defects, multi-nucleation, and enlargement of cells which was directly linked to microtubule-bundling within the cytoplasm.
For analysis of the requirement of PRC1 in lung cancer, different inducible cell lines were generated to deplete the protein by RNA interference (RNAi) in vitro. PRC1 depletion caused proliferation defects and cytokinesis failures with increased numbers of bi- and multi-nucleated cells compared to non-induced lung cancer cells. Importantly, effects in control cells were less severe as in lung cancer cells. Finally, p53 wildtype lung cancer cells became senescent, whereas p53 mutant cells became apoptotic upon PRC1 depletion. PRC1 is also required for tumorigenesis in vivo, which was shown by using a mouse model for non-small cell lung cancer driven by oncogenic K-RAS and loss of p53. Here, lung tumor area, tumor number, and high-grade tumors were significantly reduced in PRC1 depleted conditions by RNAi.
In this study, it is shown that PRC1 serves as a microtubule-bundling protein with essential roles in mitosis and cytokinesis. Expression of the protein needs to be tightly regulated to allow unperturbed proliferation of lung cancer cells. It is suggested that besides phosphorylation of PRC1, the nuclear localization might be a protective mechanism for the cells to prevent perinuclear microtubule-bundling. In conclusion, PRC1 could be a potential target of lung cancer as mono therapy or in combination with a chemotherapeutic agent, like cisplatin, which enhanced the negative effects on proliferation of lung cancer cells in vitro.
Machine-Learning-Based Identification of Tumor Entities, Tumor Subgroups, and Therapy Options
(2023)
Molecular genetic analyses, such as mutation analyses, are becoming increasingly important in the tumor field, especially in the context of therapy stratification. The identification of the underlying tumor entity is crucial, but can sometimes be difficult, for example in the case of metastases or the so-called Cancer of Unknown Primary (CUP) syndrome. In recent years, methylome and transcriptome utilizing machine learning (ML) approaches have been developed to enable fast and reliable tumor and tumor subtype identification. However, so far only methylome analysis have become widely used in routine diagnostics.
The present work addresses the utility of publicly available RNA-sequencing data to determine the underlying tumor entity, possible subgroups, and potential therapy options. Identification of these by ML - in particular random forest (RF) models - was the first task. The results with test accuracies of up to 99% provided new, previously unknown insights into the trained models and the corresponding entity prediction. Reducing the input data to the top 100 mRNA transcripts resulted in a minimal loss of prediction quality and could potentially enable application in clinical or real-world settings.
By introducing the ratios of these top 100 genes to each other as a new database for RF models, a novel method was developed enabling the use of trained RF models on data from other sources.
Further analysis of the transcriptomic differences of metastatic samples by visual clustering showed that there were no differences specific for the site of metastasis. Similarly, no distinct clusters were detectable when investigating primary tumors and metastases of cutaneous skin melanoma (SKCM).
Subsequently, more than half of the validation datasets had a prediction accuracy of at least 80%, with many datasets even achieving a prediction accuracy of – or close to – 100%.
To investigate the applicability of the used methods for subgroup identification, the TCGA-KIPAN dataset, consisting of the three major kidney cancer subgroups, was used. The results revealed a new, previously unknown subgroup consisting of all histopathological groups with clinically relevant characteristics, such as significantly different survival. Based on significant differences in gene expression, potential therapeutic options of the identified subgroup could be proposed.
Concludingly, in exploring the potential applicability of RNA-sequencing data as a basis for therapy prediction, it was shown that this type of data is suitable to predict entities as well as subgroups with high accuracy. Clinical relevance was also demonstrated for a novel subgroup in renal cell carcinoma. The reduction of the number of genes required for entity prediction to 100 genes, enables panel sequencing and thus demonstrates potential applicability in a real-life setting.
These days, treatment of melanoma patients relies on targeted therapy with BRAF/MEK inhibitors and on immunotherapy. About half of all patients initially respond to existing therapies. Nevertheless, the identification of alternative therapies for melanoma patients with intrinsic or acquired resistance is of great importance. In melanoma, antioxidants play an essential role in the maintenance of the redox homeostasis. Therefore, disruption of the redox homeostasis is regarded as highly therapeutically relevant and is the focus of the present work.
An adequate supply of cysteine is essential for the production of the most important intracellular antioxidants, such as glutathione. In the present work, it was investigated whether the depletion of cysteine and glutathione is therapeutically useful. Depletion of glutathione in melanoma cells could be achieved by blocking cysteine supply, glutathione synthesis, and NADPH regeneration. As expected, this led to an increased level of reactive oxygen species (ROS). Surprisingly, however, these changes did not impair the proliferation and survival of the melanoma cells. In contrast, glutathione depletion led to cellular reprogramming which was characterized by the induction of mesenchymal genes and the repression of differentiation markers (phenotypic switch). This was accompanied by an increased migration and invasion potential which was favored by the induction of the transcription factor FOSL1. To study in vivo reprogramming, Gclc, the first and rate-limiting enzyme in glutathione synthesis, was knocked out by CRISPR/Cas9 in murine melanoma cells. The cells were devoid of glutathione, but were fully viable and showed a phenotypic switch, the latter only in MITF-expressing B16F1 cells and not in MITF-deficient D4M3A.781 cells. Following subcutaneous injection into immunocompetent C57BL/6 mice, Gclc knockout B16F1 cells grew more aggressively and resulted in an earlier tumor onset than B16F1 control cells.
In summary, this work demonstrates that inhibition of cysteine supply and thus, glutathione synthesis leads to cellular reprogramming in melanoma. In this context, melanoma cells show metastatic capabilities, promoting a more aggressive form of the disease.